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Abstract

Universal cross-site scripting (UXSS) is a browser vulnerabil-
ity, making a vulnerable browser execute an attacker’s script
on any web pages loaded by the browser. UXSS is considered
a far more severe vulnerability than well-studied cross-site
scripting (XSS). This is because the impact of UXSS is not
limited to a web application, but it impacts each and every
web application as long as a victim user runs a vulnerable
browser. We find that UXSS vulnerabilities are difficult to
find, especially through fuzzing, for the following two rea-
sons. First, it is challenging to detect UXSS because it is a
semantic vulnerability. In order to detect UXSS, one needs to
understand the complex interaction semantics between web
pages. Second, it is difficult to generate HTML inputs that
trigger UXSS since one needs to drive the browser to perform
complex interactions and navigations.

This paper proposes FUZZORIGIN, a browser fuzzer de-
signed to detect UXSS vulnerabilities. FUZZORIGIN ad-
dresses the above two challenges by (i) designing an origin
sanitizer with a static origin tagging mechanism and (ii) prior-
itizing origin-update operations through generating chained-
navigation operations handling dedicated events. We im-
plemented FUZZORIGIN, which works with most modern
browsers, including Chrome, Firefox, Edge, and Safari. Dur-
ing the evaluation, FUZZORIGIN discovered four previously
unknown UXSS vulnerabilities, one in Chrome and three in
Firefox, all of which have been confirmed by the vendors.
FUZZORIGIN is responsible for finding one out of two UXSS
vulnerabilities in Chrome reported in 2021 and all three in
Firefox, highlighting its strong effectiveness in finding new
UXSS vulnerabilities.
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program.

†The work is done while the author is a graduate student at Seoul National
University.
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1 Introduction

Modern web browsers feature client-side scripting, enabling
highly interactive dynamic web pages. By allowing the script
code such as JavaScript [39] or WebAssembly [43] to be
executed on the client-side, developers can make a web ap-
plication powerful like a native app, significantly enriching
user experience. From the security perspective, however,
client-side scripting may expose a challenging attack surface
since a script from an attacker can also be executed. This
is particularly crucial considering a typical web application
architecture—it often involves multiple players (e.g., a main
host server, a media provider, an advertiser, etc.), and a single
web page is rendered through complex interactions or naviga-
tions among these players. Hence, it is important for browsers
to faithfully determine if a given script is not from an attacker,
and thus it is safe to execute.

Cross-site scripting (XSS) is one of the extensively studied
vulnerabilities [3, 20, 25–28, 30, 44, 45, 49, 55, 56, 58–62],
exploiting the issue of client-side scripting. It is a security
vulnerability in web applications, which allows attackers to
inject client-side scripts into a vulnerable web page. Then the
attacker’s script is executed on behalf of the victim, thereby
stealing security-critical resources (e.g., a session cookie of
the vulnerable web application). It is arguably the most com-
mon and well-known vulnerability. Popular websites such as
Twitter and Facebook had numerous XSS vulnerabilities in
the past [23, 46, 53], jeopardizing users’ data.

Universal cross-site scripting (UXSS) [31] is similar to
XSS, because it scripts across sites—i.e., it allows an at-
tacker to inject and execute code on web pages loaded by
the browser. However, the key difference is that UXSS is a
vulnerability of web browsers, not web applications. There-
fore, it is considered a far more severe vulnerability than XSS.
More specifically, the impact of UXSS is universal, i.e., it is
not limited to a particular web application but rather affects
all web applications as long as a victim runs a vulnerable web
browser. Should it be found in a browser, it allows an attacker
to launch attacks against any website, irrespective of the fact
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that such websites alone do not have any security issues.

1.1 Research Challenges
Despite the pressing security needs, UXSS is a relatively
unexplored research topic compared to XSS. Focusing on
the research direction towards fuzz testing for UXSS (which
is the main focus of this paper), we think this is due to the
following two unique challenges that UXSS bears to meet the
key requirements to perform fuzz testing.
Challenge #1: UXSS Detection. First, it is challenging to
generalize a UXSS detection mechanism for fuzzing, because
it is essentially a semantic vulnerability. This is important
because the key requirement for fuzzing is a vulnerability de-
tection mechanism without false positives. In the case of XSS,
the detection is straightforward—one only needs to check if
the attacker-provided script is executed. If it is executed, then
one can determine it triggered an XSS vulnerability. However,
in the case of UXSS, simply having the attacker-provided
script being executed does not lead to UXSS. Instead, one
must carefully inspect the capability (i.e., origin [65]) that the
script execution has been granted. To be specific, one needs
to confirm that the attacker’s script has higher privileges than
it supposed to (i.e., violating the same-origin policy [42]).
Since the capability of the attacker’s script depends on how a
browsed web page interacts with different players (or servers),
understanding the interaction semantics is crucial to detect
UXSS.
Challenge #2: UXSS Triggering. Second, it is challenging
to construct HTML inputs triggering UXSS vulnerabilities
for fuzzing. We find that the root cause of UXSS stems from
the cases that the capability of the script execution is incor-
rectly updated due to the semantic mistakes in the browser.
Hence, to increase the chance to trigger UXSS, a generated
HTML should drive complex interactions between multiple
servers (i.e., complex cross-origin page loading), which leads
to frequent capability updates with respect to scripts.

1.2 FUZZORIGIN: The First UXSS Fuzzer
This paper presents FUZZORIGIN, a browser fuzzer to de-
tect UXSS vulnerabilities. To the best of our knowledge,
FUZZORIGIN is the first UXSS fuzzer. Similar to traditional
browser fuzzers [12, 32–34, 67, 69], FUZZORIGIN generates
the HTML document embedding JavaScript, based on the
knowledge of the language syntax (i.e., grammar awareness
of HTML and JavaScript). Then FUZZORIGIN runs a web
browser while providing the HTML document in hopes the
run triggers UXSS.

Unlike traditional browser fuzzers, FUZZORIGIN designs
following two unique features to address aforementioned
challenges of UXSS: i) an origin sanitizer to detect UXSS;
and ii) prioritizing origin-update operations in generating
HTML inputs.

Solution #1: Origin Sanitizer. First, the origin sanitizer
of FUZZORIGIN keeps track of server interaction semantics
through static origin tagging, which is automatically instru-
mented into the scripts marking where the script was fetched.
Leveraging the static origin tagging, when the script is exe-
cuted by the browser, FUZZORIGIN is capable of checking if
the to-be-executed script is granted with the correct capability
(i.e., a correct origin). By design, the origin sanitizer does not
have any false positive in detecting UXSS, because the static
tagging mechanism is precise.
Solution #2: Prioritizing Origin-update Operations. Sec-
ond, FUZZORIGIN prioritize origin-update operations in gen-
erating HTML inputs. This is based on the observation that
the root cause of UXSS vulnerabilities is due to incorrect ori-
gin update handling in browsers. To this end, FUZZORIGIN
generates HTML inputs triggering complex and interactive
navigation operations, which makes the browser perform
more frequent origin-update operations. In particular, HTML
inputs generated by FUZZORIGIN can be characterized by
their complex cross-origin navigation behaviors, where each
navigation is chained with another navigation using event
handlers.
Implementation and Results. We implemented
FUZZORIGIN, which works with most of modern web
browsers, including Chrome, Firefox, Edge, and Safari. Ac-
cording to our evaluation, the origin sanitizer of FUZZORIGIN
showed no false positives in identifying UXSS vulnerabili-
ties. Over the six months of lengthy, extensive evaluations,
if the origin sanitizer reports a potential UXSS vulnerability,
it is always confirmed to be true by the respective vendors.
FUZZORIGIN’s HTML generation with chained-navigation
operations indeed raised more frequent origin-updates, allow-
ing FUZZORIGIN to effectively test UXSS-relevant logic in
the browser.

Importantly, during the evaluation FUZZORIGIN discov-
ered four new UXSS vulnerabilities (one in Chrome and three
in Firefox), which is all confirmed by the respective vendors.
We highlight that UXSS vulnerabilities are extremely rare
vulnerabilities. In 2021, only two and three UXSS vulnera-
bilities were confirmed in Chrome and Firefox, respectively,
meaning that FUZZORIGIN identified 50% (in Chrome) and
100% (in Firefox) of those.

To summarize, this paper makes the following contribu-
tions:
• Analysis: Demystifying UXSS. We analyzed two previ-

ous UXSS vulnerabilities to demystify challenges from the
perspective of fuzz testing.

• Design: The first UXSS Fuzzer. We proposed
FUZZORIGIN, a UXSS fuzzing framework. It features two
unique designs for UXSS: (i) an origin sanitizer to detect
UXSS and (ii) origin-update prioritization when generating
HTML inputs.

• Result: New UXSS vulnerabilities. We found four new
UXSS vulnerabilities using FUZZORIGIN, which attributes

2



50% (in Chrome) and 100% (in Firefox) of all confirmed
UXSS vulnerabilities in 2021.

2 Background

This section provides the necessary background to understand
FUZZORIGIN. We first describe the role of origin in browser
security as well as XSS and UXSS vulnerabilities related
to the origin (§2.1). Then we describe how browsers keep
track of origin within their internal data structure, the DOM
tree (§2.2).

2.1 Origin in Browser Security

The Same-Origin Policy. The same-origin policy con-
stitutes a fundamental security mechanism in modern web
browsers [66], which strictly defines boundaries between web
pages. If two web pages have the same origin, one page
can access other page’s resources and data without restric-
tion, such as DOM, cookie, fetch, localStorage, IndexedDB,
SharedWorker, and BroadcastChannel. For instance, this
policy allows a script embedded in https://bank.com/list
to access a session cookie stored by another page
https://bank.com/login as they have the same origin.

An origin is defined as a tuple of (scheme,
host, port)1. Suppose a web page is located in
http://example.org:8080/page.html, then it has the origin,
(http, example.org, 8080). This origin is the same as the
origin of http://example.org:8080/sub.html. However, it
is different from the origin of https://example.org:8080
(different scheme), http://example.net:8080 (different
host), and http://example.org:8888 (different port).
Cross-Site Scripting. Cross-site scripting (XSS) is a secu-
rity vulnerability in web applications, allowing attackers to
inject scripts into a vulnerable web page browsed by other
users. Exploiting XSS, the attacker’s injected script (e.g.,
JavaScript) is executed on the client-side in the context of the
vulnerable web page. This essentially elevates the attacker’s
privilege to access security-sensitive resources of the vulner-
able web page (e.g., a session cookie) and perform actions
on behalf of the user. XSS is mainly caused by a lack of
proper validation over attacker-provided inputs. For instance,
if the application fails to filter out script tags, the attacker
may provide a script tag as the input to be included in the
vulnerable web page.

XSS is arguably the most common publicly reported se-
curity vulnerability. Popular websites such as Twitter and
Facebook had XSS vulnerabilities in the past [23, 46, 53],
exposing numerous users’ security-sensitive data to be ex-
ploited. In order to launch XSS attacks against a certain web

1The HTML standard defines the origin as a 4-tuple (i.e., scheme, host,
port, and domain), but we omit domain as it does not change the overall story
of this paper.

application, the attacker has to find an XSS vulnerability in
the very application. In other words, an XSS vulnerability is
specific to a web application, and thus it cannot be used to
attack any other web application.
Universal Cross-Site Scripting. On the other hand, uni-
versal cross-site scripting (UXSS) is a vulnerability in web
browsers or their plugins, allowing attackers to run their code
on behalf of the web page loaded by the web browser. It is
similar to XSS, as it creates an XSS condition—i.e., UXSS
allows an attacker to execute attacker-injected code on web
pages loaded by the browser. However, the difference is that
UXSS is universal, meaning it is not specific to a particu-
lar web application. Since the UXSS vulnerability is in the
browser, the attack can be launched against any web page
loaded by the browser, including internal pages such as the
settings page. Thus, UXSS vulnerabilities are considered
the most critical security threat in the web ecosystem. Once
found in a major browser, it allows an attacker to launch at-
tacks against any website, irrespective of the fact that such
websites alone do not have any security issues.

More importantly, UXSS attacks often have more criti-
cal security impacts than typical memory corruption or re-
mote code execution vulnerabilities in modern web browsers.
In response to memory corruption attacks and side-channel
attacks such as Spectre [22], modern browsers started to
employ multi-process architecture [1, 16, 51] and site iso-
lation [13, 52]. Thus, each renderer process is tied to an
origin, and the access to other origin’s data is prevented by
the process isolation. As a result, even if a memory corruption
vulnerability in the renderer is exploited, an attacker would
not have access to other origin’s data. On the contrary, UXSS
attacks offer a unique and strong attack vector, as it allows
the attacker to access other origin’s data.

2.2 Origin Tracking in Browsers

Document Object Tree (DOM) and Origin. In order to en-
rich the user experience, modern web browsers support client-
side scripting (such as JavaScript). In response to an event
(i.e., when the browser parses <script> tag, when the browser
completes the page load, when the keyboard or mouse input
is received, when a certain time has elapsed, etc.), a web page
can be modified dynamically by executing the client-side
script. From the perspective of a browser implementation,
the client-side scripting is being supported by the interaction
between the renderer and the JavaScript engine. First, the
renderer takes web resources (e.g., raw HTML documents)
and constructs a document object model (DOM) tree, a logi-
cal tree representing the HTML. Then upon a certain event is
dispatched, the renderer invokes the JavaScript engine. The
JavaScript engine takes the DOM tree from the renderer, and
executes the script block corresponding to the dispatched
event, modifying the DOM tree. As numerous events are
fired throughout loading the web page, frequent interactions

3



1 <html>
2 <body onload=on_load()>
3 <iframe src=""></iframe>
4 <script>
5 function on_load() {
6 // Printing the cookie of http://example.com
7 console.log(document.cookie)
8 }
9 document.querySelector("iframe").src = "http://subframe.com"

10 </script>
11 </body>
12 </html>

(a) HTML served by http://example.com

1 <!-- embedded in http://example.com’s iframe -->
2 <html>
3 <body>
4 <script>
5 // Printing the cookie of http://subframe.com
6 console.log(document.cookie)
7 </script>
8 </body>
9 </html>
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(b) HTML served by http://subframe.com
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(c) Origin and DOM tree updates by a browser

Figure 1: An example of origin changes in the DOM tree

between the renderer and the JavaScript engine can occur.
Thus, the DOM tree is also accordingly kept being updated.

To enforce the same-origin policy, the browser keeps track
of the origin as it constructs the DOM tree. Therefore, when
the browser executes the JavaScript code triggered by a certain
event, it assures that the correct origin is provided. As this
origin tracking process is vital in understanding this paper but
complex, we take the following simplified example, showing
how the browser constructs the DOM tree and embeds the
origin for a given HTML document.
Terminology for Describing the DOM Tree. In order
to easily describe how the browser internally maintains
the DOM tree as well as the associated origin, we denote
document to be the root element of the DOM tree2. document
conceptually corresponds to the <html> tag, and it has an
additional property, origin, which stores the origin of the
document and thus represents the context of JavaScript exe-
cution within the document. When explaining the DOM tree,
we intentionally ignore all the HTML tags except <iframe>
and <script> tags, as they are necessary to understand the
origin mechanism in browsers.
Example: The Life-Cycle of Origin. In this
example, we use two HTML documents; one is
fetched from http://example.com and another from
http://subframe.com, where the former loads the lat-
ter in its iframe (shown in Figure 1a and Figure 1b).
http://subframe.com denotes a third-party site, that
http://example.com may not have control of.

2In real-world browser implementations, window is the top interface and
it has document and origin as its property. However, we regard them as the
same entity for simplicity, as they have a one-to-one correspondence in most
cases.

Once the browser fetches the HTML document from
http://example.com, it starts parsing it to construct the
DOM tree (Figure 1c- 1 ) . The root element is document
(i.e., <html> tag), where its origin is initialized to
http://example.com. The document element has the iframe
element (i.e., <iframe> tag) as a child, and iframe is ini-
tialized to have another document as a child. This child
document’s origin is initialized to http://example.com, as
the HTML standard dictates that an origin of an empty
iframe’s document inherits the parent document’s origin3.

Next, when the renderer parses the <script> tag in
HTML (Figure 1c- 2 ), it adds the script element to the
DOM tree and invokes the JavaScript engine to execute
the code in the script element. When executing, the
JavaScript engine obtains the origin for the script by travers-
ing upward from the script element until locating any
document, which is the origin of the root document (i.e.,
http://example.com). The script’s execution sets the
iframe source to http://subframe.com, which updates the
child document in the DOM tree. This changes the origin of
the child document to http://subframe.com (Figure 1c- 3 ).

Now the renderer starts parsing the new document fetched
from http://subframe.com, and it inserts another script ele-
ment to the iframe’s document (Figure 1c- 4 ). In turn, the ren-
derer invokes the JavaScript engine to execute the correspond-
ing script (line 6 on Figure 1b), which prints the document’s
cookie. Here, the origin is specified as http://subframe.com
(referring to the origin of the iframe’s document), the cookie
of http://subframe.com is printed.

3It is worth noting that the HTML standard sets special rules in determin-
ing the origin of the iframe (e.g., the sandbox attribute [38]), but we do not
consider them for simplicity.
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3

1

(a) Attack flow

1 <script>
2 if(!origin) {
3 location.reload()
4 }
5 else {
6 // Alerting the cookie of
7 // http://example.com
8 alert(document.cookie)
9 }

10 </script>

(b) Redirected script

1

if(!origin)
  reload()
else
  alert()

if(!origin)
  reload()
else
  alert()

2 3 4

(c) Origin and DOM tree updates by Firefox

Figure 2: A UXSS vulnerability in Firefox due to incorrect origins for data URLs (CVE-2017-5466).

After that, as the page loading is completed (Figure 1c-
5 ), the script function on_load() (line 5 on Figure 1a) is
invoked as it is registered as the onload handler. This function
prints the cookie of http://example.com, because the origin
is provided to be the origin of the root document.

3 Case Study on Previous UXSS Vulnerabili-
ties

This section analyzes two previous UXSS vulnerabilities in
the two most-used browsers, Firefox and Chrome, respec-
tively. Through this analysis, we attempt to showcase how
UXSS vulnerabilities occur and how the origin is related.

3.1 Incorrect Origin for Data URL

Origin of Data URL. The Location header is an HTTP re-
sponse header, which redirects a current page to the specified
URL [40] if served with a 3xx redirection response.

One URL is a data URL (data:), which embeds the data
within the URL. If the browser receives a data URL as a
redirection target, it loads the embedded data directly. One
unique aspect of this data URL is that the origin is null (i.e.,
an opaque origin [65]) per the HTML standard, implying that
a data URL page has no origin and thus has no capability to
access other pages’ resources.
CVE-2017-5466 in Firefox. The root cause of CVE-2017-
5466 [36] is that Firefox incorrectly updates the origin if the
page is redirected to a data URL and reloaded. Normally,
even if the data URL page is reloaded, it should have a null
origin. However, Firefox incorrectly updates the origin of
the reloaded data URL page to the origin of the document
before loading the data URL page. As a result, an attacker
can execute their malicious JavaScript code on behalf of the
origin before the redirection.

The attack can be performed in the following steps as
illustrated in Figure 2:
• 1 A user navigates to the target page (i.e.,
http://example.com), where the page has a link to
the attacker-controlled page (i.e., http://attacker.com).

• 2 After the target page is loaded in the browser, a user
clicks a link to navigate to the attacker’s page. Then the
browser would request a page from the attacker’s server.

• 3 Upon receiving the request, the attacker server responds
with the Location header pointing to a data URL, which
embeds the HTML as shown in Figure 2b. Then the
browser performs the in-place redirection to the data URL,
which would execute the code in Figure 2b.
• 4 When Firefox executes the JavaScript embedded in the

data URL, the origin is null. As a result, the browser
reloads the current page (line 3 in Figure 2b).
The problem occurs at 4 , in which the origin should still

be null after reloading. However, the data URL page is
incorrectly updated to the page’s origin before the initial redi-
rection (i.e., http://example.com). Thus, when the script is
executed again after reloading, the attacker’s script would
be executed on behalf of the target’s origin, allowing the at-
tacker’s code to access the target’s cookie values illegally (line
8 in Figure 2b). Firefox patched this UXSS vulnerability to
update to the correct null origin when reloading data URL
pages.

3.2 Incorrect Origin for Unloaded Document

Origin of Unloaded Document. Upon handling various
navigation requests, a browser keeps unloading old docu-
ments and loading new documents. As such, the origin of old
and new documents should accordingly be updated—i.e., the
old (and new) document should have the origin of where the
old (and new) document is fetched. From the DOM tree’s
perspective, such loading and unloading would keep updat-
ing references (i.e., updating edges), which may result in a
dangling sub-tree. The origin of a dangling sub-tree should
be invalidated and no longer updated.
CVE-2015-1293 in Chrome. The vulnerability CVE-2015-
1293 [8] occurs as Chrome references an incorrect origin for
an unloaded frame document. Due to this vulnerability, if
a victim user visits the attacker’s page with the target site
embedded in an iframe, the attacker’s script can be executed
on behalf of the target’s origin (Figure 3a).
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1

<iframe>

<script>
 iframe.src=
 http://example.com

2

(a) Attack flow

1 <iframe></iframe>
2 <script>
3 var i = document.querySelector(’iframe’);
4 var f = frames[0].Function;
5 i.onload = function() {
6 // Alerting the cookie of http://example.com
7 f("location.replace(’javascript:alert(document.cookie)’)")();
8 }
9 i.src = ’http://example.com’;

10 </script>

(b) PoC HTML
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(c) Origin and DOM tree updates by Chrome

Figure 3: A UXSS vulnerability in Chrome due to incorrect origins for unloaded documents (CVE-2015-1293).

To demonstrate, an example of the attacker’s HTML and
how the DOM tree is updated is shown in Figure 3b and
Figure 3c, respectively.

• 1 Upon receiving the attacker’s HTML, the browser cre-
ates the root document and an empty document as a child
of the iframe element. The origin of the root document is
http://attacker.com, and the child document inherits the
origin of the root according to the HTML standard [64].

• 2 The script tag is executed, which registers a load event
handler (line 3 to 8). This event handler is appended to the
iframe.

• 3 The script execution continues (line 9), which changes
the source of the iframe to http://example.com (line 10).
As a result, the iframe’s document is replaced with the
new document fetched from http://example.com, whose
origin is http://example.com. The incorrect origin update
happens here. For the old document to be unloaded (which
is not really unloaded but left being dangled), Chrome
should not have updated its origin. However, it incorrectly
updated to the new origin, http://example.com.

• 4 When the new document finishes loading, it fires the
load event and invokes the event handler. The handler uses
the Function constructor of the old document to execute
the script in the context of the old document. The script
changes the location of the iframe to a JavaScript URL,
which is equivalent to executing the script in the iframe’s
document.

Normally, this should have been blocked per the same-
origin policy—i.e., the context of the old document, whose ori-
gin is http://attacker.com, cannot access the new iframe’s
document, whose origin is http://example.com. However,
due to the incorrect origin update to the old document, the

payload (i.e., ’alert(document.cookie)’) was executed in
the target’s context, thereby reading the target’s cookies.

4 Design

Now we present the design of the FUZZORIGIN. First,
we introduce the overall design and workflow of
FUZZORIGIN (§4.1). Next, we present the origin sanitizer,
which is designed to detect UXSS vulnerabilities (§4.2). As
noted before, UXSS detection is challenging because it is a
semantic vulnerability, which requires interactive or naviga-
tion semantics among cross-origin pages. The origin sani-
tizer addresses such a challenge by keeping track of origin
semantics as the DOM tree is updated. Then it checks if
the origin semantics are correctly updated when executing
the script. Lastly, we describe how FUZZORIGIN generates
HTML/JavaScript inputs to prioritize origin-update opera-
tions, thereby effectively finding UXSS vulnerabilities (§4.3).

4.1 Overview
The overall design and workflow of FUZZORIGIN are illus-
trated in Figure 4. FUZZORIGIN generates random HTML
files (embedding JavaScript), where the generation algorithm
is aware of the HTML/JavaScript grammar [2, 66] (marked
1 ). When generating, FUZZORIGIN performs the follow-
ing two unique tasks: (i) FUZZORIGIN instruments addi-
tional check code to detect UXSS, which we call origin sani-
tizer (§4.2); and (ii) FUZZORIGIN prioritizes origin-update
operations so as to increase the chance to trigger UXSS (§4.3).
Then generated HTML files are deployed to a set of preconfig-
ured servers, in which each HTML is intended to navigate to
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Figure 4: Overall design and workflow of FUZZORIGIN.

other HTMLs ( 2 ). Next, FUZZORIGIN runs a web browser
with one of the randomly picked server’s URL ( 3 ). As the
browser loads the HTML, FUZZORIGIN’s origin sanitizer
(which was instrumented before) constantly checks if UXSS
has occurred ( 4 ). If the UXSS is detected by the origin san-
itizer, then FUZZORIGIN reports such an HTML case as a
UXSS vulnerability.

4.2 Detecting UXSS with Origin Sanitizer
UXSS is a semantic vulnerability, which occurs if the browser
incorrectly updates the origin in document when updating the
DOM tree in response to various events. In order to detect
the UXSS vulnerability, we first clearly define the primitive
security property for UXSS, origin violation as follows.

Definition: Origin violation. The origin when executing
a script block (which we denote as originExec) should be
the same as the origin initially assigned for the script block
when fetching the HTML document (which we denote
as originFetch). We state that the script execution raises
origin violation if originExec and originFetch are different.

Interpreting the previous UXSS vulnerabilities (described
in §3.1 and §3.2) with the notion of the origin violation,
originFetch is represented with the background color of
script blocks (Figure 2c and Figure 3c). originExec fol-
lows the origin of the document, the first parent document
of the to-be-executed script block. As such, both pre-
vious UXSS vulnerabilities raise the origin violation as
originFetch (i.e., http://www.attacker.com) and originExec
(i.e., http://example.com) are different, allowing attacker’s
script to be executed on behalf of the target’s origin.

Given this definition, the requirements for UXSS detection
would reduce down to the following three tasks: 1) how to
keep track of originFetch until the point of script execution; 2)
how to retrieve originExec when executing the script; and 3)
how to faithfully check the differences between originFetch
and originExec at all script execution points. In the following,
we describe how FUZZORIGIN handles each task in turn.
Tracking originFetch with Static Tagging. When the
browser fetches the HTML document, originFetch is deter-
mined and stored as a property in document. The goal here
is then to keep track of originFetch until the point of script
execution. Note that the tracking of originFetch is quite a

<html>
  <body onload=on_load()>
    <iframe src=""></iframe>
    <script>

      function on_load() {

        console.log(document.cookie)
      }
      document.querySelector("iframe").src =
        "http://subframe.com"
    </script>
  </body>
</html>

“entry point”

“entry point”

var _origin_fetch_ = 'http://example.com' ;
var _origin_exec_ = origin;
if (check_origin_violation(_origin_fetch_,
                           _origin_exec_)) {
  report_origin_violation();
}

Figure 5: An example of Origin Sanitizer’s instrumentation, insert-
ing the check code to global and functional entry points.

challenging task—e.g., the browsers still suffer from UXSS
vulnerabilities due to this challenge.

The core idea to trace originFetch is to statically tag
originFetch within the script, which is not updated over the
entire life-cycle of rendering. In particular, FUZZORIGIN
first determines originFetch for each HTML document to be
served to the browser. Because FUZZORIGIN controls the
server URL along with its port to serve the HTML document,
FUZZORIGIN can always determine originFetch for each gen-
erated HTML. Then FUZZORIGIN tags originFetch inside
scripts, which declares a new variable having the originFetch
string as value. This declaration is performed for every point
that the origin should be checked, which will be explained
later in this section.

1 var _origin_fetch_ = ’http://example.com’;

Therefore, although FUZZORIGIN does not explicitly trace
the originFetch, this static origin tagging method allows
FUZZORIGIN to obtain a correct originFetch depending on
the JavaScript execution context.
Retrieving originExec. It is quite simple to retrieve
originExec, which can be done by reading the origin prop-
erty in JavaScript. This is because the browser implements
the interface of the origin property so as to allow the script
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code to check its origin of the execution at runtime. Note that
this origin property is supported by most of modern web
browsers (including Chrome, Firefox, Edge, and Safari) as it
is dictated in the HTML standard [41].
Checking Origin Violation. Given the capability of ob-
taining originFetch and originExec, now we describe how
FUZZORIGIN checks the origin violation. FUZZORIGIN
checks the origin violation for all possible entry points of
script code execution. As described in §2.2, the browser ren-
derer executes the script in response to browser events, so
there can be multiple execution entry points within <script>.
These execution entry points include (i) a global entry point
(which is executed right after parsing the script tag), (ii)
functional entry points (i.e., the renderer hands over the ex-
ecution to a certain function), or (iii) dynamic entry points
evaluating string code (i.e., eval and Function in Figure 3b).

For all possible entry points, FUZZORIGIN instruments
the code to check the violation (illustrated in Figure 5).
FUZZORIGIN first obtains originFetch, which is statically
tagged before. Then it obtains originExec through access-
ing the origin property. Then check_origin_violation()
performs the origin violation check. It returns true if the
originFetch and originExec are different, implicating that
FUZZORIGIN detected UXSS. It returns false otherwise. One
exception is matching the null origin (i.e., an opaque origin).
Specifically, if originExec is null, FUZZORIGIN returns false
even if two origins are different. This is because the null
origin can be created during navigation (e.g., loading a data
URL) and it has no capability to access pages other than pages
with the null origin.

If the violation is detected, FUZZORIGIN reports the vi-
olation. The report includes the point where the origin vi-
olation is raised as well as the stack trace of the violation.
FUZZORIGIN also includes all the generated HTML files and
server setups, which allows users of FUZZORIGIN to repro-
duce a discovered UXSS vulnerability if needed.

It is worth noting that while the instrumentation for global
and functional entry points seem straight-forward, one for
dynamic entry points may seem unclear. However, since
FUZZORIGIN generates HTML with its complete abstract
syntax tree, FUZZORIGIN can always locate the dynamic
entry points. Once located, FUZZORIGIN prepends the serial-
ized string of the origin-violation checking code right before
the original string to be evaluated.

4.3 Prioritizing Origin-Update Operations
We observed that UXSS vulnerabilities occur due to incor-
rect origin updates in the DOM tree (§3). Based on this ob-
servation, FUZZORIGIN attempts to prioritize origin-update
relevant operations when generating HTML inputs. The idea
behind prioritizing origin-update operations is in performing
more frequent navigation operations while handling associ-
ated events. Revisiting previous UXSS vulnerabilities in the

case study (§3), origin updates take place while perform-
ing cross-origin navigations such as loading, redirecting, or
reloading. Then the origin violation occurs when executing
the script, which is triggered in response to events dispatched
by the navigation operations.

To this end, the HTML generation of FUZZORIGIN is de-
signed to meet the following two goals: i) raising cross-origin
navigation; and ii) chained navigation with event handlers.
Next, we describe how FUZZORIGIN meets each goal in turn.
Raising Cross-Origin Navigation. A browser updates the
origin as it navigates to a different, cross-origin web page.
Thus, in order to test as many navigation actions as possible in
the browser, the HTML generation of FUZZORIGIN considers
the following two things: 1) use various navigation APIs; and
2) specify cross-origin navigation targets.

First, FUZZORIGIN generates HTML in consideration of
a complete list of navigation-relevant APIs (i.e., APInav). Ta-
ble 1 shows the list of navigation APIs, which can be cate-
gorized into the APIs with HTML attributes and ones with-
out HTML attributes. Navigation APIs using the HTML
attributes (i.e., href of the <a> tag, action of the form tag,
and src of the iframe tag) specify the target URL to be nav-
igated once triggered. As the navigation trigger for HTML
attributes may vary (i.e., <href> requires a click action, and
form requires a submit action), FUZZORIGIN accordingly
generates associated action-triggers with the JavaScript code.
It is worth noting that these HTML attributes can be statically
generated (i.e., embedding HTML tags) or dynamically added
(i.e., inserting an element with the script execution), and thus
FUZZORIGIN randomly alternates static and dynamic gener-
ation cases.

Navigation APIs without HTML attributes can be invoked
through JavaScript, which includes history (i.e., moving for-
ward, backward, or replacing the history state), location (i.e.,
replacing or loading the current location), or opening the
window.

Second, when invoking navigation APIs, FUZZORIGIN
specifies various cross-origin navigation targets. It is worth
noting that the following three navigation APIs do not take
the target URL to be navigated, as it does not need to. For in-
stance, history.forward and history.backward navigate to
forward and backward, respectively, and location.reload()
reloads the current page. If the navigation APIs take the
target URL, FUZZORIGIN randomly selects a URL from a
prepared pool of URLs. Such a URL pool is initialized with a
preconfigured set of multiple web servers, where each server
again includes multiple web pages. As a result, this pool
setup allows FUZZORIGIN to test cross-origin navigation of
browsers.
Chained Navigation with Event Handlers. Once naviga-
tion APIs are invoked, the navigation actions are performed
by the browser, which in turn fires navigation events. In par-
ticular, the browser fires a specific set of events associated
with each navigation API (listed in Table 1).
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Navigation APIs (APInav) Type Generation Target URL Triggering Action Dispatched Events (Eventnav)

a.href=URL Attribute HTML/JavaScript O Click beforeunload, unload, DOMContentLoaded, load
form.action=URL Attribute HTML/JavaScript O Submit beforeunload, unload, DOMContentLoaded, load
iframe.src=URL Attribute HTML/JavaScript O - DOMContentLoaded, load

history.forward() Method JavaScript X - beforeunload, unload, DOMContentLoaded, load
history.backward() Method JavaScript X - beforeunload, unload, DOMContentLoaded, load
history.replaceState(state, title, URL) Method JavaScript O - beforeunload, unload, DOMContentLoaded, load
location.replace(URL) Method JavaScript O - beforeunload, unload, DOMContentLoaded, load
location.reload() Method JavaScript X - beforeunload, unload, DOMContentLoaded, load
window.open(URL) Method JavaScript O - beforeunload, unload, DOMContentLoaded, load

Table 1: A list of navigation APIs (i.e., APInav). The column ‘Generation‘ represents if APInav can be used as an HTML tag or invoked using
JavaScript. The column on ‘Target URL‘ shows if the APInav takes the target URL parameter or not. The column on ‘Triggering Action‘
denotes an extra action required to trigger a navigation behavior of APInav. The column on ‘Firing Event‘ shows a list of events fired by the
corresponding APInav. Note the beforeunload and unload event of window.open(URL) is dispatched when an existing window is reused.

As such, FUZZORIGIN randomly registers multiple event
handlers associated with navigation APIs. The events
beforeunload and unload are dispatched before and after
unloading the page. The event load and DOMContentLoaded
are dispatched when loading is completed. FUZZORIGIN de-
fines these four events as Eventnav and uses those to handle
navigation events.

Within each event handler, FUZZORIGIN then randomly
invokes another navigation APIs so as to chain the navigation
behaviors. This chaining makes the browser keep navigating
through cross-origin web pages under various circumstances,
further extending the testing coverage towards browser’s ori-
gin update logic.

It is worth noting that always invoking APInav and regis-
tering Eventnav would not lead to UXSS conditions. This is
because the browser may not perform meaningful operations
only with these APIs and events. Therefore, FUZZORIGIN
provides WEIGHTED_RAND (Algorithm 2) as a configuration pa-
rameter, balancing the API invocation (i.e., between APInav
and non-APInav) as well as the event registration (i.e., between
Eventnav and non-Eventnav). Specifically, if WEIGHTED_RAND
is zero, all possible APIs (including APInav) and all possible
events (including Eventnav) will be invoked and registered, re-
spectively. In this configuration setup, FUZZORIGIN does not
prioritize the chained-navigation. The number of all possible
APIs can vary depending on the number of DOM instances/pa-
rameters/methods, but it is mostly over 600 APIs. The number
of all possible events is 89. If WEIGHTED_RAND is one, on the
contrary, only APInav and Eventnav will be invoked and regis-
tered, respectively. In this configuration, FUZZORIGIN maxi-
mizes the prioritization using nine APInav and four Eventnav.

To generate HTML, FUZZORIGIN focuses on
new function, new eventhandler and web APIs. We
present the detailed algorithm of HTML generation in
Appendix A for reference.

5 Implementation

We implemented FUZZORIGIN, which is able to test
most modern web browsers, Chrome, Firefox, Safari,
and Edge. In terms of the implementation complex-
ity, FUZZORIGIN is implemented in about 9k lines of
Python code. (3.5k LoCs are HTML and Javascript gen-
eration, and 2.5k LoCs are for browser testing frame-
works.) FUZZORIGIN is open-source and available at
https://github.com/compsec-snu/fuzzorigin.
Origin Sanitizer and HTML Generator. To generate
HTML and CSS, we used Domato [12] which is a state-of-the-
art generation-based DOM fuzzer. For JavaScript, we imple-
mented our own JavaScript generator for FUZZORIGIN simi-
lar to Fuzzil [14]. In order to generate syntactically and se-
mantically correct JavaScript, we defined JavaScript grammar
(e.g., for, if, function statement) and DOM API (e.g., docu-
ment.createElement()) as Python classes. However, it is an
open and challenging problem to generate HTML/JavaScript
covering entire HTML/JavaScript grammars, and we will dis-
cuss it in §7. The origin sanitizer of FUZZORIGIN is also
implemented in Python within the JavaScript generator.
Browser Testing Framework. In order to perform auto-
mated browser testing, we used Python selenium library and
WebDriver. By using the WebDriver, FUZZORIGIN can check
the violation report of the origin sanitizer without browser
modification. The testing servers are implemented using
the Python flask library, and are created and managed with
Docker to handle a large number of servers.

6 Evaluation

This section attempts to evaluate FUZZORIGIN with the fol-
lowing focuses:
• Performance of the origin sanitizer to detect UXSS, in

terms of detection accuracy overhead (§6.1)
• Effectiveness of chained-navigation with event handling to

prioritize origin update operations (§6.2)
• New vulnerabilities discovered by FUZZORIGIN. (§6.3)
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Experimental Setup. We ran FUZZORIGIN on Intel Xeon
Silver 4214R (24 cores) with 512 GB RAM. We prepared five
web servers (i.e., five origins) and 10 HTML files for each
server, totaling 50 HTMLs for a fuzzing iteration.

In order to comprehensively evaluate FUZZORIGIN’s effec-
tiveness, we compared FUZZORIGIN with Domato [12], and
Freedom [67], which are state-of-the-art DOM fuzzers. Since
Domato and Freedom cannot detect UXSS and thus cannot
keep track of origin changes, we incorporated FUZZORIGIN’s
origin sanitizer to those for fair comparison.

6.1 Performance of Origin Sanitizer

UXSS Detection Accuracy. FUZZORIGIN uses tagged
origin (i.e., originFetch) as an oracle to compare with the
originExec. Thus, there are no false positive cases (i.e., origin
sanitizer detects an origin violation but it was not a UXSS vul-
nerability), unless the tagged origin is incorrectly determined.
As the originFetch can always be determined when generating
the HTML file, we argue that FUZZORIGIN’s origin sanitizer
is free from false positives. This argument can be indirectly
supported by our evaluation experiences over six months of
running FUZZORIGIN, because we were not able to find any
origin violation report other than the four cases we reported
and confirmed. All the reported four vulnerabilities were
confirmed and we could not find any false-positive cases.
Runtime Detection Overhead. In order to analyze the
performance overhead of origin sanitizer, we measured the
execution time and the invocation number of the origin com-
parisons per each fuzzing iteration. The average execution
time per one origin comparison was 0.0098 ms, and a single
fuzzing iteration has invoked 219.58 origin comparisons on
average. Consequently, origin sanitizer uses 2.16 ms for the
origin comparisons in each fuzzing iteration, which is 0.11%
of the total execution time (i.e., 2.00 s). Considering that
the network latency for fetching the HTML file is usually
around 100 ms, the 2.16 ms overhead per a fuzzing iteration
is reasonable.

6.2 Effectiveness of Chained-Navigation
FUZZORIGIN created HTML in the direction of using navi-
gation and event handler many times to find UXSS vulnera-
bilities. In this respect, we analyze whether the navigation
and event handler calls were frequently triggered as intended.
And we analyze originExec updating count in the browser to
find which of the navigation or event is more important in
influencing the origin-update.

6.2.1 Navigation and Event Handler

Navigation. We measured the number of navigations using
how many requests were received by the servers. The empir-
ical distribution of navigation counts is presented as a box
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Figure 6: The number of navigation completion and unique event
handling for a single fuzzing iteration by each scheme. In both cases,
FUZZORIGIN achieved the highest number.
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Figure 7: The number of origin updates per each fuzzing run, and
the scatter map showing the impacts of navigation and event handling
behaviors to origin changes.

plot in Figure 6a for FUZZORIGIN, Freedom, and Domato.
FUZZORIGIN achieves the highest median in comparison to
Freedom and Domato.
Event Handler. We measured the number of event handlers
directly. Figure 6b describes the number of unique calls to the
event handler. Compared to Freedom, FUZZORIGIN made
1.2 times more unique event handler calls in Chrome and
2.2 times more in Firefox. Freedom and Domino use a fixed
number of event handlers and execute that only once. On the
other hand, FUZZORIGIN not only executes all event handlers
that are called, but also has a higher number of unique event
handlers than the other two schemes.

6.2.2 Origin-Update

Execution Origin-Update. We measured origin-update by
originExec to evaluate FUZZORIGIN. Figure 7a is the result
of originExec changing. FUZZORIGIN recorded the largest
number of origin-update. The results are almost similar to
those of navigation, but the difference is significantly reduced.
However, this value is still the largest value and shows that
the originExec is sufficiently changed through navigation and
event handler as originally intended by FUZZORIGIN.
Correlation with Navigation & Event Handler. Figure 7b
shows the overall data patterns. The X-axis represents the
number of triggered navigations and the Y-axis represents the
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Variable Firefox Chrome
(Intercept) -1.800* (0.479) -0.502 (0.394)
Navigation 1.338* (0.029) 1.329* (0.036)

Event Handler 0.025* (0.002) 0.020* (0.002)
R-squared 0.733 0.671

Table 2: Result of Poisson regression. R2 represents that overall
regression was statistically significant. Navigation and event handler
are significant predictors in both Firefox and Chrome. (Standard
errors are reported in parentheses. * indicates significance at the
99% level.)
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Figure 8: An elapsed time in average to detect seven previously
known CVEs while varying WEIGHTED_RAND. When WEIGHTED_RAND
is higher than 0.6, no CVEs were found within 24 hours of running.

number of invoked unique event handlers. And the number of
origin-updates is shown as color. It can be seen that the color
of the point gets darker as the distance from the x-axis and
y-axis increases.

We analyze correlation more deeply with Poisson regres-
sion to which of them is more important between navigation
and event handler. Table 2 is the result of the fitted regression
model. R2 was 0.733 and 0.671 which indicates the overall
regression was statistically significant. The event handler is
a statistically significant predictor (with coefficients 0.025
and 0.020) in both Firefox and Chrome Navigation was also
reported to be significant (with coefficients 1.338 and 1.329)
in both browsers.

In summary, to increase origin-update, both navigation and
event handlers were analyzed to be significant. The design of
FUZZORIGIN that generates HTML by combining navigation
and event handler is an effective strategy to make many origin
changes.

6.2.3 Detecting Previously Known UXSS

In this experiment, we check if FUZZORIGIN is able to find
seven previously known UXSS vulnerabilities to show the
effectiveness of chained-navigation. These include CVE-
2016-1667, CVE-2016-1697, CVE-2016-1711, CVE-2016-
5204, CVE-2016-5207, CVE-2016-5208, and CVE-2017-
5008, and all of these CVEs can be reproduced in a single
Chrome binary (i.e., Chrome 52.0.2715). Since it takes a

very long time for FUZZORIGIN to randomly generate the
exploitation code, we conducted this experiment by turning
FUZZORIGIN into a mutation-based fuzzer with following
two rules: i) an initial HTML template per known CVE is
provided to FUZZORIGIN, where the template is the known
PoC HTML where its JavaScript APIs have been wiped out,
and ii) given the template, FUZZORIGIN keeps replacing
wiped out entries with APIs according to WEIGHTED_RAND.

Figure 8 shows an elapsed time in average to find seven
UXSS cases while varying weight value. FUZZORIGIN took
the shorted time when WEIGHTED_RAND is 0.2 (i.e., 20%).
Compared to the case that origin-update prioritization is not
used at all and all the APIs were randomly selected (i.e.,
WEIGHTED_RAND is zero), FUZZORIGIN was 3 hours and 45
minutes faster when WEIGHTED_RAND is 0.2. On the contrary,
compared to the case that FUZZORIGIN always uses either
APInav and Eventnav (i.e., WEIGHTED_RAND is 1), FUZZORIGIN
failed to find any CVEs for the given 24 hours. This is be-
cause if FUZZORIGIN generates too many APInav, navigation
operations are performed even before any meaningful API se-
quences are constructed. To summarize, these results suggest
that chained-navigation indeed helps FUZZORIGIN to find
UXSS vulnerabilities if a right balance between origin-update
APIs and normal APIs were given. While finding an optimal
balance would also be important for FUZZORIGIN, we leave
this as a future work.

6.3 New Vulnerabilities Discovered by
FUZZORIGIN

We ran FUZZORIGIN about six months to test and find UXSS
vulnerabilities. During the evaluation, FUZZORIGIN found
four new vulnerabilities in total (Figure 9). FUZZORIGIN
found two vulnerabilities that could run UXSS by changing
the port in Chrome (i.e., Issue #1280083)4 5 and Firefox (i.e.,
Issue #1741327). Both vulnerabilities have different PoCs,
but we suspect the root causes are in document.domain. More-
over, FUZZORIGIN found two vulnerabilities in Firefox, one
of which is classified as a high-impact security vulnerabil-
ity (i.e., CVE-2021-43536). Firefox has patched it and issued
a security advisory. Another one (i.e., Issue #1727480) is
not patched yet due to low reproducibility. We note that this
vulnerability was triggered due to FUZZORIGIN’s chained-
navigation fuzzing.
Case Study: CVE-2021-43536. This vulnerability occurs
when the document loader fails to initialize due to an er-
ror (e.g., a possible stack overflow in the case of our PoC).

4 Chromium-based browsers such as Edge are also vulnerable to this
vulnerability.

5After being confirmed, a Chromium developer commented that the
reported Issue #1280083 is not UXSS because it requires a specific secu-
rity relaxation. However, we think this still is UXSS as such relaxation is
quite common in practice–Google reported that 13% of web sites have such
relaxation [52].
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Browser Version Bug ID Description Severity Status

Chrome 96.0.4664 Issue #1280083 document.domain used in parent and child causes the origin (port) change. Low Confirmed

Firefox
94.0b2 Issue #1741327 document.domain used in parent and child, causes script execution even if src of child window to the parent’s origin. Serious Confirmed

94.0b9 Issue #1727480 History manipulation causes navigation to other pages on nsDocShell. Serious Confirmed
CVE-2021-43536 Under certain circumstances, asynchronous functions could have caused navigation to fail but expose the target URL. High Pached

Figure 9: A list of vulnerabilities found by FUZZORIGIN.

Attacker
Server

Target
Server

http://attacker.com

Load

Load3

1

<script>
function foo(){}
location.replace()
foo()

Run
script

2

(a) Attack flow
1 <script>
2 function foo () {
3 console.log(document.cookie)
4 foo()
5 }
6 location.replace("http://example.com")
7 foo()
8 </script>

(b) Snippet of PoC HTML

1

Function foo(){
  console.log()
  foo()}
location.replace
foo()

2

Function foo(){
  console.log()
  foo()}
location.replace
foo()

3

(c) Origin and DOM tree updates

Figure 10: New vulnerability: CVE-2021-43536.

Figure 10b is the snippet of a PoC code6. On the PoC code,
foo function (lines 2-5) calls itself (line 4). The location
is changed to http://example.com (line 6), and then foo
is called (line 7) while the page is loading. The function
foo is called recursively, causing the stack to fill up. If
this is just before the http://example.com, the document
loader fails to initialize and only the origin is updated to
http://example.com. Then, because the origin has changed,
the cookie of http://example.com is displayed (line 3).

This vulnerability could be only found with FUZZORIGIN,
as it dynamically creates and calls the function, whereas most
DOM fuzzers rarely generate functions that is used as event
handlers.

6 The actual PoC code is much more complicated, but we simplified it to
clearly show the root cause and attack flow.

Case Study: #1727480. We will briefly explain issue
#1727480 in the abstract since it has been confirmed but
has not been fixed yet. nsDocShell [35] is responsible
for loading and viewing of a document in Firefox. Is-
sue #1727480 is caused by origin confusion in nsDocShell
when navigating via history.back() and history.forward()
inside iframe. Figure 11b is the snippet of the PoC
code6. http://attacker.com has two iframes embedding
http://example.com (line 3) and creates a new iframe with
an unload event handler (lines 9-11). The function payload
(lines 5-8) will be triggered when the created iframe is un-
loaded. http://example.com has two APInav: history.back(),
and history.forward(). By some unknown cause, this caused
the parent window to navigate to http://example.com. How-
ever, the actual navigation did not take place, leaving the
onload event handler to be executed in the context of
http://example.com origin.
Case Study: #1280083 and #1741327. These two were
detected in Firefox and Chrome, respectively, but the pattern
of PoC is similar. According to the MDN, document.domain
is deprecated [37]. In particular, MDN warns that changing
the value of document.domain deletes port information, which
is dangerous from the security point of view. Since port
information disappears, resources can be accessed from cross-
origin with a different port. If certain conditions are met,
XSS can also be performed with cross-origin by changing
the port. For instance, in a shared hosting and cloud setup,
two different websites may share the same IP address but use
different ports.

7 Discussion and Limitation

UXSS Detection without the Origin Sanitizer. There can
be alternatives of the origin sanitizer to detect UXSS, but
these have its own limitations compared to the origin san-
itizer. One approach is to generate attacker’s HTML and
check whether the JavaScript is executed under the origin
of the victim. However, it cannot find a vulnerability that
requires to generate HTMLs of both attacker and victim, such
as #1280083 and #1741327 found by FUZZORIGIN. An-
other approach would be to have an attacker steal victim’s
resources (e.g., cookie). However, this approach would have
following two issues. First, there would be false positives if
the script is dynamically evaluated through eval(). In this
case, one cannot determine where the JavaScript is fetched
from and where it is executed. Second, the integrity of the
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iframe
3

1

<iframe>

<script>
 iframe.onunload=payload 2

<script>
 history.back()
 history.forward() 4

(a) Attack flow
1 <!-- http://attacker.com -->
2 <body>
3 <script>
4 function payload(){
5 // Alerting the cookie of http://example.com
6 alert(document.cookie)
7 }
8 i = document.createElement(’iframe’);
9 document.documentElement.appendChild(i);

10 i.onunload = payload;
11 </script>
12 <iframe src="http://example.com"></iframe>
13 </body>
14

15 <!-- http://example.com -->
16 <script>
17 history.back();
18 history.forward();
19 </script>

(b) Snippet of PoC HTML

IFrame Script

Document

i.onunload=…
Document

1 2 3Run Script

attacker.comOrigin

attacker.comOrigin

4 Run Script

IFrame

Document
example.comOrigin

IFrame

Document

Document
attacker.comOrigin

Script
history.back
history.forward

example.comOrigin

“navigation”

“navigation”“unload”

Event Handler

alert()

Event Handler

alert() !

(c) Origin and DOM tree updates

Figure 11: New vulnerability: #1727480.

victim’s token value has to be ensured, but as FUZZORIGIN
dynamically generates the JavaScript, such integrity can be
violated at runtime. One may be able to fix this issue by
restricting the JavaScript random generation process, which
will need a further study.
UXSS Mitigation with the Origin Sanitizer. While
FUZZORIGIN leveraged the origin sanitizer for UXSS
fuzzing, we think it has potential to be used to prevent UXSS
attacks in web browsers. Most browsers manage origins ac-
cording to the HTML specification [65], but it is extremely
challenging to implement all of those correctly. The ori-
gin related policies are already complex, involving various
corner-cases, and thus modern browsers still have critical
UXSS vulnerabilities. Employing FUZZORIGIN’s origin san-
itizer would help to address this issue, but that would still
entail additional research challenges which require further

studies—e.g., tracking all originFetch is difficult due to the
JavaScript dynamic interpretation (e.g., eval).
Non-deterministic Behaviors of the Browser. When ana-
lyzing the vulnerabilities FUZZORIGIN found, we observed
that the non-deterministic behavior of the browser is related to
UXSS. This is mainly due to the non-deterministic latency in
loading each page. Specifically, since FUZZORIGIN heavily
triggers navigation operations as well as associated events,
the order of page loading often becomes non-deterministic
as well. This rendered the vulnerability reproduction diffi-
cult, so it is challenging to perform the detailed vulnerability
analysis. For instance, the vulnerability #1727480 had quite
a low reproducibility due to this issue. We think this is an
interesting finding that the order of events or timings may
impact the overall behaviors of browsers, which would be
worth the further study, possibly from the fuzzing research
perspective.
Limitation of HTML Generation. As the HTML/-
JavaScript syntax is complex, the current implementation
of FUZZORIGIN to generate HTML is limited. We ob-
served that there are certain types of JavaScript code patterns
that the current FUZZORIGIN cannot generate–such as the
code pattern using the API of the JavaScript engine. Cur-
rently FuzzOrigin supports eval, setTimeout, new function,
new eventhandler, and XMLHTTPRequest in JavaScript. In ad-
dition, all the tags and attributes of HTML are supported,
and cross-origin loading is possible if they have an src at-
tribute. However, FUZZORIGIN cannot certain code patterns
using the API of the JavaScript engine, such as prototype,
promise, and arrow function. FUZZORIGIN cannot cover
other resources (e.g., browser extensions and bookmark fea-
tures), which can trigger UXSS vulnerabilities. Covering
all complex HTML/JavaScript code patterns and resources
would definitely help FUZZORIGIN’s UXSS detection capa-
bility, and we leave this task as a future work.

8 Related work

Universal Cross-site Scripting (UXSS). There have been
few studies related to the UXSS vulnerabilities. Barth et
al. [4] identified cross-origin JavaScript capability leaks and
proposed an algorithm which monitors the points-to rela-
tion of the JavaScript heap for detecting such vulnerabilities.
However, this approach cannot be applied to detect the UXSS
vulnerabilities caused by incorrect origin checks—the major
reason of UXSS vulnerabilities. Recently, Moroz et al. [31]
analyzed the bugs in the Chrome browser which lead to the
UXSS vulnerabilities. Compared to these, FUZZORIGIN is
the first, automatic framework to find the UXSS vulnerabili-
ties.

While not directly focusing on UXSS, there were several
previous works discussing security issues highly related to
UXSS. These include the same-origin policy (SOP) [54],
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cookies [5, 9–11, 57, 70], and cross-origin resource sharing
(CORS) [6, 29]. Schewenk et al. [54] developed a compre-
hensive testing framework to test SOP for DOM tree accesses.
Franken et al. [11] evaluated the access policies for third-party
cookies to prevent cross-site attacks or third-party tracking.
Drakonakis et al. [9] conducted the study of cookie-based
account hijacking in the wild. However, none of these tech-
niques was applicable to find the UXSS vulnerabilities.

Browser Fuzzing. FUZZORIGIN performs the HTML
fuzzing to find UXSS, a semantic vulnerability in browsers.
However, most previous works performing similar HTML
fuzzing and JavaScript engine fuzzing are designed to find
memory bugs. As such, these focused on testing DOM con-
struction and modification routines of browsers, which are
well-known memory bug sources.

Most existing DOM fuzzers [12, 32–34, 69] have taken the
generation-based fuzzing approach. Cross-fuzz [69] gener-
ates an extremely long-winding sequence of DOM operations
and creates circular references to stress the browser’s mem-
ory management. Domato [12] is a state-of-the-art fuzzer
which generates grammatically correct HTML documents
based on predefined grammar files to test Chrome browser.
Dharma [33] and Avalanche [32] generated inputs based on
the context-free grammars provided by Mozilla. Recently,
Freedom [67] introduced an approach to efficiently generate
HTML by relying on a context-aware intermediate represen-
tation. Freedom [67] stated that the coverage feedback is not
helpful to find more bugs.

Previous works for JavaScript Engine fuzzing [14, 17,
24, 47] have focused on generating semantically correct
JavaScript. Montage [24] and DIE [47] leveraged abstract
syntax trees (ASTs) for mutation. CodeAlchemist [17] pro-
posed semantic-aware assembly, and Fuzzil [14] designed
intermediate representation (IR) to build syntactically and
semantically correct test cases.

Fuzzing for Semantic Vulnerabilities. There were previ-
ous works which fuzzing techniques to find semantic bugs. To
find the semantic bugs, many studies [7, 15, 19, 21, 50, 63, 68]
leveraged differential testing techniques. Nezha [50] pro-
posed an efficient input-format-agnostic differential testing
framework to trigger semantic bugs. TCP-Fuzz [71] used
differential testing to detect memory and semantic bugs in
TCP stacks.

In addition to fuzzing traditional software, several frame-
works that conduct fuzz testing on new targets have been
introduced. Deepxplore [48] is the whitebox framework to
systematically test real-world DL systems. DiFuzzRTL [18]
detects semantic bugs in CPU by comparing the execution
results of ISA and RTL simulation. Along the line of the
previous semantic fuzzing research, FUZZORIGIN introduces
a new type of semantic fuzzing technique, focusing on UXSS
vulnerabilities.

9 Conclusion

Universal cross-site scripting (UXSS) is a critical vulnerabil-
ity in web browsers, allowing attackers to execute a malicious
script on behalf of pages that should not be accessible to at-
tackers. This paper presented FUZZORIGIN, the first UXSS
fuzzing framework. It proposes a new UXSS detector, the
origin sanitizer, as well as a new UXSS-focused HTML gener-
ation method. During the evaluation, FUZZORIGIN identified
four new UXSS vulnerabilities, demonstrating its effective-
ness in finding UXSS issues.
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A HTML Generation

Algorithm 1: JavaScript generation algorithm
1 Function genereteScript()

input :tags (HTML tags), N (number of statement)
output :script (list of statement)

2 script← [];
3 f unctions← /0;

/* Generate N statements */

4 for n = 1 to N do
/* Pick a random value in [0, 1] */

5 r← RAND([0,1])
6 if r ≤ PROBFUNC then

/* Function definition */

7 statement← generateFunction()
8 f unctions← f unctions∪ statement.name
9 else if r ≤ PROBEVENT then

/* Event handler setting */

10 f unction← RAND_PICK( f unctions)
11 event← WEIGHTED_RAND(Eventnav, Eventall)

generateFunction()
12 else if r ≤ PROBBLOCK then

/* JavaScript code block */

13 codeblock← RAND_PICK(codeblocks)
14 statement← generateCodeBlock(codeblock)
15 else

/* General JavaScript operations */

16 api← WEIGHTED_RAND(APInav, APIall)
17 statement← createCode(api, tags)
18 APPEND(script,statement)
19 end
20 end

Algorithm 2: Weighted random algorithm
1 Function WEIGHTED_RAND()

input :set1 (priority set), set2 (entire set)
output : item (selected item)
/* Pick a random value in [0, 1] */

2 r← RAND([0,1])
3 if r ≤ PROBWEIGHT then

/* Weighted rand */

4 item← RAND_PICK(set1)
5 else

/* Normal rand */

6 item← RAND_PICK(set2)
7 end

FUZZORIGIN randomly generates an entire HTML file which includes
1) HTML tags, and 2) JavaScript—We focus only on HTML tags and
JavaScript generation, as the CSS does not affect the origin-related oper-
ations. For the HTML tags, FUZZORIGIN randomly uses all the possible
HTML tags while prioritizing APInav related tags over the others. The HTML
tags initially construct the DOM tree inside the browser, but we mainly focus
on the JavaScript generation since the HTML tags are statically applied and
cannot incur dynamic origin-updates in the browser.

Thus, FUZZORIGIN designs a JavaScript generation algorithm as illus-
trated in Algorithm 1. To be specific, the algorithm (i.e., generateScript)
takes the generated HTML tags and the statement number (i.e., N) as an
inputs, and outputs the script of JavaScript statements. The algorithm itera-
tively generates a statement which randomly belongs to one of the following
four types: 1) function definition, 2) event handler attaching, 3) JavaScript
code blocks, and 4) general JavaScript operations.

For the function definition, FUZZORIGIN defines a function template
and fills the function body by recursively calling generateScriptr with the
small number N (i.e., generateFunction in line 7). Especially, FUZZORIGIN
prioritize APInav and event triggering APIs inside the function so that the
invocation of the function can be chained into further navigation or event
handling. Then, FUZZORIGIN appends the defined function to the corpus
(i.e., line 8, functions), which will be used to attach the event handler.

For attaching the event handler, FUZZORIGIN randomly chooses a func-
tion from the corpus (i.e., functions), and attaches it as a handler of a random
event (e.g., click or load). FUZZORIGIN also prioritizes the navigation-
related events (i.e., Eventnav), thus the completion of a navigation can fre-
quently invoke other functions (Algorithm 2).

Next FUZZORIGIN considers two JavaScript code blocks (i.e., if-else
and try-catch). FUZZORIGIN defines a template and fills the block by
recursively calling generateScript with the small number N (i.e., line 14,
generateCodeBlock)

Finally for the other general JavaScript operations, FUZZORIGIN ran-
domly generates Web APIs and function-call (i.e., line 17, createCode).
The web APIs include DOM object creation (i.e., document.createElement)
and DOM property set, DOM method call, timer function (i.e., setTime-
out), and XMLHttpRequest. FUZZORIGIN covers Document, Element, Event,
EventTarget, Node and Window as a DOM object. FUZZORIGIN does not
generate anything other than aforementioned web APIs and function-call
to focus on origin-related operations.

During the generation, we configure the statement to frequently use APInav
and event triggering APIs (e.g., Click, and Submit), which help fulfilling
FUZZORIGIN’s design philosophy (i.e., frequent navigation and chained
event handling). The element defined from the HTML tags can also be
accessed and updated here.

While all the statements are randomly generated, the probabilities for
selecting navigation-related events and APInav (i.e., WEIGHTED_RAND) can be
configured so that various fuzzer settings can be used.
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