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Abstract
Confidential container is becoming increasingly popular as
it meets both needs for efficient resource management by
cloud providers, and data protection by cloud users. Specif-
ically, confidential containers integrate the container and
the enclave, aiming to inherit the design-wise advantages of
both—i.e., resource management and data protection. How-
ever, current confidential containers suffer from large per-
formance overheads caused by i) a larger startup latency due
to the enclave creation, and ii) a larger memory footprint
due to the non-shareable characteristics of enclave memory.
This paper explores a design conundrum of confidential

container, examining why the confidential containers impose
such large performance overheads. Surprisingly, we found
there is a universal misconception that an enclave can only
be used by a single (containerized) process that created it.
However, an enclave can be shared across multiple processes,
because an enclave is merely a set of physical resources while
the process is an abstraction constructed by the host kernel.
To this end, we introduce TeeMate, a new approach to

utilize the enclaves on the host system. Especially, TeeMate
designs the primitives to i) share the enclave memory be-
tween processes, thus preserving memory abstraction, and
ii) assign the threads in enclave between processes, thus
preserving thread abstraction. We concretized TeeMate on
Intel SGX, and implemented confidential serverless com-
puting and confidential database on top of TeeMate based
confidential containers. The evaluation clearly demonstrated
the strong practical impact of TeeMate by achieving at least
4.5 times lower latency and 2.8 times lower memory usage
compared to the applications built on the conventional con-
fidential containers.

1 Introduction
Cloud computing offers several advantages in resource man-
agement, allowing its users to focus on their application
development without the burdens of managing computing
resources [10, 12–14, 39, 52]. Specifically, cloud providers
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take the complete charge of managing the entire system re-
sources (e.g., CPU, memory, and storage) on which cloud
users easily run their application. Due to these advantages,
emerging cloud service models such as Software as a Service
(SaaS) [13, 52] and Kubernetes as a Service (KaaS) [14] have
gained the strong popularity.
Looking into the technical aspect of these cloud service

models, container [26, 40] (or OS-level virtualization) plays
the key role as it facilitates both resource management and
isolation. To be specific, each container is assigned with iso-
lated resources, allowing the cloud providers to manage the
resources per process, avoiding costly full virtualization [21].
This is enabled by two key features provided by the un-
derlying OS: i) namespace [41], which provides a different
userland view over the resources per process (e.g., files and
network), and ii) cgroup [22], which limits the CPU and
memory usage per process. These two features construct a
containerized environment, which serves as a basic manage-
ment unit by the cloud providers.
Meanwhile, confidential computing [2, 7, 11, 16, 27] has

gained strong popularity in clouds, as cloud users demand
strong security guarantees over their data. Especially, there
is a growing need to exclude the cloud providers from trusted
path, as the cloud handles a large amount of privacy-sensitive
data that can be in conflict of interest. To meet such security
demands, confidential computing (including Intel SGX [16],
AMD SEV [2], and Intel TDX [33]) introduces an enclave,
which is a trusted execution environment. Specifically, the
enclave is protected from all systems components includ-
ing operating systems, hypervisors, and even the other en-
claves [2, 65] such that the enclave owner can safely execute
their workloads without trusting the cloud providers.

In this paper, we explore a design conundrum of confiden-
tial containers [60], which integrates aforementioned two
techniques, containers and confidential computing. To be
specific, confidential containers aim at inheriting the design-
wise advantages of each—i.e., resource management capa-
bility from containers and data protection capability from
confidential computing. As it is naturally thought, current
confidential containers construct a single container with a
single enclave, which serves as a basic management unit
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by the host system. For example, SGX enclaves are already
widely used with the containers to construct a protected
environment in the container [16].

However, current confidential containers suffer from large
performance overheads. Especially, we found that integrat-
ing the enclave into the container incurs i) a larger startup
latency due to the inherent security mechanism when creat-
ing the enclaves [79, 92], and ii) a larger memory footprint
due to the non-shareable characteristics of enclave mem-
ory [66, 79, 93]. We confirmed these overheads and root
causes by conducting preliminary experiments on two pop-
ular cloud applications, i.e., serverless computing [5, 10, 12],
and database [47, 49].

Surprisingly, after the analysis, we found there is a univer-
sal misconception that a single enclave must be dedicated
to only a single process. In other words, all the previous
works, which use the enclaves [57, 60, 61, 73, 86, 87, 90]
have (incorrectly) assumed the process that initially created
the enclave can exclusively own it. However, we found that
it is wrong, and an enclave can be shared across multiple
processes (and containers) as long as we preserve the mem-
ory abstraction and thread abstraction assumed by the host
operating systems.

Based on this observation, we design TeeMate, which is a
new approach to utilize the enclaves in the host’s perspective.
In particular, TeeMate enables a single enclave to be shared
across multiple processes so that the host kernel can manage
(and isolate) them with different containers. Thus, TeeMate
successfully solves the issues of startup latency and memory
footprint as it avoids creating a new enclave every time,
and enables to share the enclave memory between different
(containerized) processes on the host kernel.

In order to share the same enclave across different pro-
cesses, we design TeeMate to i) preserve the memory ab-
straction on the memory of shared enclave, and ii) preserve
the thread abstraction on the enclave’s threads. Then, we
discuss intra-enclave isolation to guarantee the isolation be-
tween the processes using the same enclave. We concretized
these concepts in the context of Intel SGX, which is an al-
ready widely used confidential computing technology in the
cloud [16].

We implemented TeeMate on the secured version of two
major cloud applications, i) confidential serverless comput-
ing, and ii) confidential database. The evaluation results
clearly indicate that TeeMate outperforms applications us-
ing current confidential containers in terms of latency and
memory usage. Specifically, TeeMate achieves a latency
speedup of 4.54-6.98 times and exhibits memory footprint by
only 20-36% in confidential serverless computing. Similarly,
in confidential database applications, TeeMate achieves a
latency speedup of 277.6-1046.6 times and reduces mem-
ory footprint up to 41%. Thus, we confirm that TeeMate is
a ready to use framework on current cloud infrastructure,

which solves the performance issues without any hardware
modification.

2 Background
This section explains container (§2.1) and enclave (§2.2),
which are the basic unit of resource management and data
protection. Then, we introduce confidential container, which
integrates both to inherit the design-wise advantages (§2.3).

2.1 Container based Resource Management
Container technologies [26, 40] refer to the software for
managing and isolating the system resources using OS prim-
itives [22, 41]. Especially, the containers work at the granu-
larity of a process, as it is the basic unit for organizing the
system resources (e.g., virtual address space, CPU registers,
and opened files per each process). In particular, containers
are implemented using kernel subsystems, i) namespace [41],
which provides a different (isolated) userland view over the
system resources (e.g., files and network), and ii) cgroup [22],
which limits the CPU and memory used by the process. They
populate a containerized environment, inside which the pro-
cess runs as if it has its own computer system.

Cloud providers heavily rely on the containers as they fa-
cilitate the resource management and isolation with minimal
performance overheads [1, 20]. Specifically, recent trends in
cloud industry have triggered the widespread adoption of
containers such as serverless computing [10, 12] and micro-
service architecture [44]. For example, almost 60% of or-
ganizations that use the cloud have adopted the container
technologies [53]. As another example, Software as a Ser-
vice (SaaS) model, which also heavily uses the containers, is
expected to grow at a CAGR of 13% from 2023 to 2030 [31].

2.2 Enclave based Data Protection
Enclave is the basic unit of protection by confidential com-
puting technologies (e.g., Intel SGX [16], AMD SEV [2], and
Intel TDX [33]) that is hardware isolated from the systems
components (e.g., operating systems and hypervisors). To
be specific, the CPUs construct an enclave by i) populating
and encrypting the memory region used by the enclave, and
ii) protecting the enclave’s register context through access
control. More specifically, when creating an enclave, an ini-
tial image (i.e., code and data) is copied into the protected
memory region, and hash checked so that the enclave owner
can ensure the integrity of the loaded image. After that, CPU
encrypts the memory and isolates the register context such
that any other components including even another enclave
cannot access the original one’s data, thus guaranteeing the
confidentiality.

Thanks to its strong security guarantees, emerging cloud
applications use the enclave to protect their data in a poten-
tially compromised cloud environment. Especially, current
trends of AI to handle a large amount of privacy-sensitive
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data have pushed to use the enclaves. In response, several
open source projects for confidential computing have been
initiated (e.g., [4, 15]) and cloud providers quickly announced
the support for confidential computing (e.g., [11, 25]).

2.3 Confidential Container: Intersection of
Container and Enclave

Confidential container [15, 60] has been introduced to meet
both needs in the cloud industry as explained above. To be
specific, confidential container integrates the container and
the enclave to inherit the design-wise advantages of both—
i.e., efficient resource management by cloud providers, and
data protection for cloud users. For example, SGX enclaves
are already widely used for the confidential containers as
they are originally designed for process level isolation [65].
In addition, confidential virtual machines (VMs), which use
AMD SEV [2], or Intel TDX [33], are also actively studied to
be integrated with the containers (e.g., Kata Container [36]).
Regardless of the underlying technology, current confiden-
tial containers assign an enclave for each container, which
naturally follows the concept of the container and the en-
clave.

3 Infeasibility of Confidential Container
However, current confidential containers suffer from large
performance overheads [66, 79, 79, 92, 93]. Especially, inte-
grating the enclave with the container imposes i) a longer
startup latency due to the creation of the enclave, and ii) a
larger memory footprint due to the non-shareable charac-
teristics of the enclave’s memory. In order to clearly demon-
strate these points, we conducted preliminary experiments
as follows.

3.1 Preliminary Experiments on the Performance
Overheads

Wedesigned the preliminary experiments with two following
research questions:
1. Howmuch performance overheads does confidential con-

tainer impose?
2. Why does confidential container impose such perfor-

mance overheads?

To this end, we measured the startup latency and memory
footprint of two benchmark applications, which are expected
to be widely used with confidential containers: i) confidential
serverless computing, and ii) confidential database.
Performance Overheads of Confidential Serverless
Computing. Serverless computing is an emerging cloud
computing model, where the resource management is fully
delegated to the cloud providers while the users can solely
focus on their workloads [10, 12]. Containers [26, 40] are the
key building blocks in such model as they facilitate the re-
source management and isolation by the cloud providers. In
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Figure 1. Performance comparison of confidential serverless
computing versus the native model. 1 : Native Serverless, 2 :
Confidential Serverless. The bloated memory of confidential
serverless computing is due to the Gramine LibOS’s implementa-
tion that physically populates all the allocated virtual memory [90].

particular, the providers construct a different containerized
environment for each request and the following function
instance (i.e., unit of the computation in serverless com-
puting [5]), thereby providing a different userland view of
resources and resource limits.

Confidential serverless computing [79, 92], which employs
the confidential containers, is the security enhanced ver-
sion of serverless computing as it protects the workloads
even on a compromised cloud environment. Meanwhile, the
providers still manage the system resources so that the users
can only focus on their workloads. To this end, state-of-the-
art confidential serverless computing frameworks serve each
request by creating a new confidential container (including a
new containerized process and a new enclave), and running
a function instance on it.

Thus, we measured the latency for handling each request
and memory footprint of the state-of-the-art confidential
serverless computing framework. To be specific, we imple-
mented a security enhanced version of OpenWhisk [5] that
runs the functions in the confidential containers, using an
SGX enclave [16] and Gramine LibOS [30] as an enclave
runtime. As shown in Figure 1, employing current confiden-
tial container in serverless computing imposes almost 10×
latency slowdown and 20-300× more memory usage. Espe-
cially, Figure 1a shows that creating an enclave (for every
request) takes 16.8-17.4× longer time than creating a con-
tainerized process, demonstrating that creating an enclave
(and its security mechanisms) is a major bottleneck.
Performance Overheads of Confidential Database.
Database is one of the most widely used applications in
cloud computing [47, 49]. In particular, database as a service
(DBaaS) [56] is a standard way to quickly integrate the data-
base into the user’s service logic while the cloud providers
manage the underlying software stacks. DBaaS also heavily
relies on the containers as the providers can easily manage
and isolate the resources between different service instances.
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Figure 2. Performance comparison of confidential database system
versus the native system.

Especially, the file systems management of the containers
facilitates the fork-based snapshots for database systems [50].
In this approach, the parent database process continues to
handle the requests by forking a child process, while the
child process performs the snapshot by writing the database
into the storage. Fork-based snapshot is a widely used ap-
proach by database systems [50], as it provides a significant
performance benefits in accordance with the copy-on-write
semantics of operating systems [23]—i.e., data pages are
copied only when a new request to write to that page is
received.
Confidential database, which runs the database system

in the confidential containers, protects sensitive data from
the cloud providers. With current confidential containers,
fork-based snapshot for database would create a new (child)
process and enclave, copy the parent enclave’s memory into
the child’s enclave (following the fork’s semantics [28]), and
run as usual—i.e., the parent serving the requests while the
child performing the snapshot. However, copy-on-write se-
mantics would not be allowed as the parent’s enclave and
the child’s enclave cannot share the same protected mem-
ory [86].

Thus, we measured the startup latency of fork-based snap-
shot and memory footprint of current confidential database
systems. To be specific, we implemented a security enhanced
version of Redis [49] that runs in the confidential container,
which employs an SGX enclave [16] and Gramine LibOS [30].
As shown in Figure 2, forking a child process (and copying
the enclave) takes over 1000× times longer latency and 4×
times larger memory usage as the entire memory contents
of the parent enclave need to be copied to the child enclave.
While the numbers may be exaggerated by the implementa-
tion of Gramine LibOS (i.e., copying memory through TLS
encrypted channel [35]), we want to note that inability to
share the memory between parent and child enclave is the
main cause of these overheads.

Table 1. Previous works to solve the performance issues of enclave.

Research goal Scheme Hardware modified

Fast enclave
PENGLAI [67] ⃝

PIE [79] ⃝
startup LightEnclave [70] ⃝

Reusable Enclave [92] ×†

Efficient enclave
Nested Enclave [83] ⃝

PIE [79] ⃝
memory sharing Elasticlave [93] ⃝

Cerberus [66] ⃝
†Reusable Enclave discusses only for temporally reusing an enclave.
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Figure 3. Relation between an enclave and process in the perspec-
tive of host kernel.

3.2 Limitations of Previous Works to Solve the
Performance Overheads

Several previous works have tried to solve the performance
issues of enclaves as illustrated in Table 1. In particular, we
categorize them into two lines of works as follows: i) im-
proving the startup latency of enclave, and ii) enabling the
efficient memory sharing between enclaves.
However, most of the works cannot be directly applied

to current cloud platforms [13, 14, 20, 32, 46, 52], as they
require hardware modification (i.e., shown in Table 1). While
Reusable Enclave [92] achieves the goal without modifying
the hardware, it enforces the cloud providers to maintain
the same container to reuse the enclave, thereby making it
difficult to manage the resources. Specifically, all of them
have only focused on the inherent issues of enclaves, but
not on how to utilize the enclaves in the perspective of host
systems.

4 Key Idea of TeeMate
Thus, we re-thought the enclave in the perspective of host
systems, and surprisingly, we found an incorrect universal
assumption on its usage (§4.1). Based on this observation,
we came up with the key idea of TeeMate, which solves the
aforementioned issues (§4.2).
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4.1 Universal Assumption: One-to-One Enforcement
of Process and Enclave

After analyzing the issues, we found there is a universal
assumption that a single enclave must be dedicated to only
a single process (i.e., one-to-one enforcement of a process
and an enclave as shown in Figure 3-(a)). For example of us-
ing SGX enclaves, no previous work has assumed using the
same enclave by different processes [67, 70, 79, 92], and they
implicitly assumed the process which creates the enclave
exclusively owns it. While Occlum [86] designs multipro-
cessing in a single enclave, it is not about how the processes
(of the host kernel) use the enclave—i.e., Occlum is also a
single process in the perspective of the host kernel.

However, we found that this assumption is wrong. In other
words, a single enclave does not have to be dedicated to a sin-
gle process. This is because an enclave is merely a protected
resource composed of an encrypted memory and isolated
CPU context, while the process is an abstraction of the re-
sources created by the host kernel—i.e., the way of thinking
the resources. In the perspective of host kernel, an enclave
can be deemed as any other resources, such as memory and
disk, that can be abstracted and shared across the processes.

4.2 Our Solution: Sharing a Single Enclave across
Multiple Containers

Based on this observation, we came up with the key idea of
TeeMate, sharing a single enclave across multiple contain-
ers (i.e., Figure 3-(b)). Since there is no need for an enclave
to be dedicated to a single process, it is also possible to share
the same enclave across multiple containerized processes.
By doing so, we can avoid the performance issues while
taking both benefits of the container and the enclave as the
conventional confidential containers. In other words, cloud
providers can efficiently manage the system resources by ap-
plying different containerized environment for each process,
while the users can be ensured the security of their data using
the enclave. However, we also preserve the performance, as
we i) avoid creating a new enclave every time, and ii) enable
sharing the enclave’s memory between different processes.

To this end, we design TeeMate to provide an abstraction
for the host kernel that it is operating different (container-
ized) processes with dedicated enclaves, but actually using
the same enclave. More specifically, we design the primi-
tives to preserve i) the memory abstraction on the shared
enclave’s memory (i.e., §5.3), and ii) the thread abstraction
on the shared enclave’s threads (i.e., §5.4). Then, we discuss
how the isolation between the processes can be achieved
within the same enclave (i.e., §5.5).

5 Design of TeeMate
In this section, we introduce the threat model of TeeMate
(§5.1), and explain the design of TeeMate using Intel
SGX [16] (§5.2 to §5.5).

Hypervisor

Operating System

Cloud Provider

Containers

Cloud User

App & Data

Output

Figure 4. Threat model of TeeMate.

5.1 Threat Model
We assume the common threat model of confidential com-
puting as shown in Figure 4, where the cloud users do not
trust the cloud providers. This is because the cloud providers
may be compromised, or even themselves are in conflict of
interests with the cloud users (e.g., Samsung utilizing the
services hosted by Amazon AWS [51]). We want to note that
there is a growing demand to protect the data even on a
compromised cloud environment as more privacy-senstive
data are handled in the cloud.

As explained in §2.2, confidential computing is an emerg-
ing solution to meet such needs, so we focus on the perfor-
mance issues of employing both the confidential comput-
ing and container technologies. We do not consider general
security issues of confidential computing such as Iago at-
tacks [62] and side channels [75–77, 80]. Denial-of-Service
attacks [24, 85] are also out-of-scope. In addition, we trust
the implementation of the software components loaded in
the enclave, and exploits through their vulnerabilities are
out-of-scope. Hardening software implementations is a long
been problem, and we believe TeeMate can take advantages
of ongoing researches [63, 69, 91].

5.2 Design Overview
As illustrated in §4.2, TeeMate enables high performance
confidential containers by sharing the same enclave across
different containers (i.e., containerized processes). To this
end, TeeMate provide an abstraction for the host kernel that
it is operating different processes with dedicated enclaves
(within each containerized environment), but actually using
the same enclave (inside which, the resources are isolated
for each process). Specifically, in order to achieve the process
abstractions assumed by the host kernel, TeeMate satisfies
two requirements: i) for memory abstraction, sharing the
same enclave’s physical memory within different virtual
address spaces of each process, and ii) for thread abstraction,
assigning the threads in the same enclave to each different
process.
Thus, we design TeeMate’s primitive operations achiev-

ing these requirements based on Intel SGX [16]. While we
provide the design for Intel SGX only, we want to note the
key idea of TeeMate (i.e., sharing the same enclave) is gen-
eral enough to be applied to confidential VMs (e.g., AMD
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SEV [2], Intel TDX [33]). We discuss how TeeMate can be
used for confidential VMs in §9.

5.3 Sharing Enclave Memory across Multiple
Containers

In order to provide the memory abstraction, TeeMate maps
the physical pages of the same enclave into the virtual ad-
dress spaces of each process. Thus, TeeMate enables the
threads running in different containers (with different ad-
dress spaces) to access the same enclave’s code and data,
which avoids to create a new enclave for every new con-
tainer. Especially in SGX, we name it Enclave Page Cache
(EPC) aliasing, as we alias the same EPC pages (of an SGX
enclave) to different virtual address spaces—i.e., EPC is a
protected memory region used by Intel SGX [16]. In the fol-
lowing, we explain the details how we alias the EPC pages.
Technical Analysis: Address Translation and Valida-
tion in SGX. SGX ensures the integrity of the virtual-to-
physical address mapping for EPC pages, preventing mali-
cious systems components from launching a page remapping
attack (e.g., tricking a victim enclave to access a different
EPC page through the same virtual address [65]). This in-
tegrity is assured by maintaining additional address mapping
within the special EPC page, so called EPCM. Specifically,
when a new EPC page is allocated, the kernel updates the
page table with virtual-to-physical address mapping (e.g., VA
to PA) related to the EPC page. When the kernel requests
the CPU to create the EPC pages, the CPU creates a new
EPCM entry per new EPC page, which contains VA of the
corresponding EPC page located at PA. When any access to
the EPC page is attempted later using VA, the CPU trans-
lates VA to PA using the page table. However, since the page
table can be compromised by the adversarial systems com-
ponents, the CPU further validates that such a translation
is correct using EPCM, thereby assuring the integrity of the
virtual-to-physical address mapping.

An interesting technical characteristic here is in the ad-
dress validationmechanism of EPCM,which does not involve

the identity of a process (i.e., EPCM does not include pro-
cess identifiers like ASID [9]). Thus, an EPC page (located
at PA) can be accessed by any other processes using VA as
long as the page table of the process contains the same map-
ping from VA to PA. If so, the process, which did not initially
create the EPC page, can still access the EPC page through
accessing to the same VA. Note that while this may seem a
vulnerable design, it does not harm the security assurance
of SGX, which we elaborate the detailed security analysis
in §8.
EPC Aliasing. Based on this characteristic, TeeMate
aliases EPC pages across different processes. Specifically,
EPC aliasing maps multiple virtual pages to the same physi-
cal EPC page, where multiple virtual pages are (i) associated
with different processes and (ii) these virtual pages have the
same virtual address. More technically, if a process p0 already
allocated an EPC page with address mapping (i.e., VA0 to PA0),
EPC aliasing allows to map the same EPC page to another
process p1 by updating p1’s page table, inserting VA0 to PA0
address mapping. After that, the process p1 can also access
the EPC page with virtual address VA0.

In order to share EPC pages between containers, TeeMate
performs the EPC aliasing as illustrated in Figure 5. Specifi-
cally, TeeMate creates the initial container. Then, after iden-
tifying available virtual and physical pages for an enclave,
the kernel updates the page table of the initial container —i.e.,
adding an address mapping from VA0 and VA1 to PA0 and PA1,
respectively ( 1 ). Then, the kernel requests the CPU to allo-
cate new physical EPC pages using the SGX instruction (i.e.,
EADD [65]) ( 2 ). This consequently makes CPU to create an
EPCM entry corresponding to PA0 and PA1, which contains
VA0 and VA1, respectively ( 3 ). At this point, in order to share
and thus alias this EPC page later, TeeMate additionally
records the mappings for VA0 and VA1 ( 4 ).
When creating a new container, TeeMate aliases the

previously allocated EPC pages. This entails to insert the
recorded address mapping—i.e., (VA0, PA0) and (VA1, PA1)—to
the page table of the new container ( 5 ). Therefore, when
the new container accesses the memory with VA0 or VA1,
the CPU would accordingly translate it to the aliased EPC
page located at PA0 or PA1 using (i) the page table of the new
container and (ii) the corresponding EPCM entry.

From the performance perspective, sharing the enclave’s
memory significantly reduces the latency since it avoids
copying, verifying and encrypting the initial memory con-
tents for every new confidential container. Furthermore, it
reduces the memory footprint by enabling to share the com-
mon data between two containers, avoiding to duplicate the
same data in each enclave every time.
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Figure 6. Constructing container-independent enclave threads

5.4 Assigning Enclave Threads to Each Container
Then, TeeMate provides the thread abstraction for the host
kernel as if each process is running its own thread in the ded-
icated enclave. To be specific, TeeMate assigns the threads
in the same enclave to each different process so that the host
kernel can run each enclave thread in different containerized
environments—e.g., providing different file systems using
namespace [41]. One may wonder it is a vulnerable design
as the host kernel can illegally change the container envi-
ronment for a given enclave thread, but we can guarantee
the security by carefully designing a sanity check logic in
the enclave, which is explained in §8. In the following, we
elaborate the details how we achieve the thread abstraction
in the context of Intel SGX [16].
Technical Analysis: Multi-threads in SGX Enclave. In
order to support parallelism, SGX designs unique schemes for
secure multi-threading within an enclave, which we refer to
as enclave threads [65]. In particular, the execution contexts
of enclave threads are managed by Thread Control Structures
(TCSs), which are also stored in the EPC pages to protect
against adversarial system components. More technically,
each TCS manages the entry point and the CPU register
context per enclave thread. First, the entry point ensures
that an enclave thread always starts or resumes (i.e., EENTER
or ERESUME) at the code address designated in the given TCS
(i.e., OENTRY field). The entry point often contains security
checks and enforcement to sanitize the inputs from non-
enclave context. Second, the CPU register context ensures
that a paused enclave thread is always resumed as expected.
This is carried out by saving (and restoring) all CPU register
values to (and from) the TCS1, which happens when the
enclave thread exits (and resumes). It is worth noting that
initial TCS pages are measured as other EPC pages, thereby
preventing untrusted system components from breaking its
initial integrity.

1More precisely, TCS stores the reference to State Save Area (SSA) in the
EPC pages.

The technical catch here is that unlike the typical use-
cases of multi-threading in SGX, we find that an enclave
thread does not need to be bound with a specific process. In
fact, an enclave thread can be migrated from one process to
another. Specifically, when switching from the non-enclave
execution context to the enclave execution context, any TCS
page can be selected and such a selection does not restrict
which process performs the switch (i.e., which process per-
forms EENTER or ERESUME). TeeMate leverages this opera-
tional property to enable individual execution context per
container while sharing the EPC memory pages.
Individual Enclave Thread per Container. In order to
support an enclave thread per container while aliasing EPC
pages, TeeMate designs management schemes to map be-
tween a TCS page and a container. As such, while sharing
EPC pages, TeeMate assigns a dedicated TCS page per en-
clave thread, where each enclave thread is associated with a
different containerized process.

More technically, Figure 6 shows how TeeMate supports
an individual enclave thread per container. In this figure,
we assume that a single container (i.e., Container0) and an
enclave were initially created before, where no enclave code
has been executed yet. Accordingly, TeeMate initializes a
TCS table, which indicates that all TCS pages are available.
Next, a new container is created (i.e., Container1), which
shares the EPC pages through EPC aliasing. To execute en-
clave threads per container, TeeMate first picks an available
TCS page per container (e.g., tcs0 for Container0 and tcs1
for Container1, respectively). Then each container starts the
execution of the enclave thread by entering the enclave (i.e.,
EENTER) with the chosen TCS page. Completing the execution
of the enclave thread, the TCS table is accordingly updated to
mark which TCS page is now returned back to be available.

5.5 Ensuring Isolation Guarantees in an Enclave
The final step toward sharing an enclave is to isolate the en-
clave’s memory between the processes using it (i.e., enclave
thread of each process). In case of SGX enclaves, TeeMate
cannot rely on page table isolation [38], as untrusted host
kernel has the full control of the paging structures. Instead,
we implement a software based memory isolation in the en-
clave as shown in the previous works [57, 70, 86, 88]—i.e.,
intra-enclave isolation. However, we want to note that it is
merely due to the design of Intel SGX [16], and confidential
VMs can employ the paging mechanism that is securely im-
plemented by the trusted guest kernel in the VM. We further
explain how we implemented the isolation in SGX enclaves
for each application in §7.

6 Implementation
TeeMate’s implementation consists of i) TeeMate con-
troller, which is a composition of a tailored system software
stack (implemented in host kernel) and userspace layer, and
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ii) TeeMate runtime, which manages the operations in the
enclave.
As TeeMate controller, we first modified Linux SGX dri-

ver [43] and Linux kernel [42] for the EPC aliasing (i.e., §5.3).
Especially, we implemented new ioctl syscalls for remem-
bering the virtual to physical address mappings and popu-
lating the same mappings in the other virtual address space.
Based on it, we implemented the userspace layer to invoke
the ioctl for remembering the mappings (by the process
that created an enclave), and populating the mappings (by
the other process that wants to use the enclave). For the
enclave threads, we implemented Linux SGX driver to book-
keepwhich process uses which TCS page (i.e., §5.4). Then, we
made the userspace layer to get the pointer for correspond-
ing TCS page through ioctl and enter into the enclave with
it. We implemented TeeMate controller with 490 LoC in
Linux SGX driver, 10 LoC in Linux kernel, and 250 LoC in
Gramine LibOS [30]. It is worth noting that we do not pro-
tect TeeMate controller, and its integrity does not affect the
security of the components in enclave (i.e., explained more
in §8).

For TeeMate runtime which runs in the enclave, we mod-
ified Gramine LibOS [30] to support real world applications
without modification. To be specific, we reused most of the
components in Gramine LibOS, but enabled it to identify
the process (based on a requested TCS page) such that the
integrity of the files (outside the enclave) can be checked
per process. On top of it, we ran actual applications (i.e.,
Node.js [45] for confidential serverless computing, and Re-
dis [49] for confidential database) while they internally iso-
late the threads in the enclave. We elaborate more on the
intra-enclave isolation for each application in §7. We imple-
mented 1800 LoC of Gramine LibOS for TeeMate runtime,
170 LoC in Node.js for confidential serverless computing,
and 270 LoC in Redis for confidential database.

7 Evaluations on Applications
This section evaluates the performance improvement of
TeeMate on confidential serverless computing, and confi-
dential database. We first describe the evaluation setup (§7.1),
then introduce the evaluation results of each application in
the following (§7.2 and §7.3).

7.1 Evaluation Setup
We evaluated TeeMate on 64-core Intel Xeon Gold 6348
CPU machine which supports SGX2 feature [34]. Especially,
we ran all the experiments in a QEMU virtual machine [48]
with 160GB memory and 48GB EPC size, which runs a Linux
kernel 6.2.0 [42].
Models for Comparison. In order to clearly demonstrate
the performance improvement of TeeMate, we compare
three models (for each application) as summarized below:

Table 2. List of evaluated serverless functions.

Name Description

dynamic-html creating html using input
sleep sleep for 1 second
uploader upload local file to remote storage
binary-search binary tree search using input as a key
crypto-aes AES encryption/decryption
crypto-md5 MD5 hash computation
partial-sums input array summation
regexp-dna DNA sequence processing
validate-input input string processing

• Native represents the conventional application that does
not employ confidential computing (i.e., using only the
container). This model shows the maximum performance
that TeeMate can achieve.

• Strawman represents the secured version of the appli-
cation that employs state-of-the-art confidential con-
tainer [15, 60]—i.e., each container creates its own SGX
enclave. Especially, we used Gramine LibOS [90] as the
SGX runtime, and ran the bare-metal application on it.

• TeeMate implements our design such that the same SGX
enclave is shared across different containers.

7.2 Confidential Serverless Computing
For the confidential serverless computing, we used Open-
Whisk [5], which is a real-world serverless computing plat-
form widely used for analyzing the performance. In particu-
lar, for every request, OpenWhisk creates a new container
which includes the Node.js [45] runtime, and runs the server-
less function implemented using JavaScript (i.e., Native).
Then, the function receives the user’s data, runs the code on
it, and returns the result. In this respect, we implemented
Strawman model to create a new container, and a new SGX
enclave in it, which loads the Node.js runtime [45] (on the
Gramine LibOS [90]) to securely run the functions.
Intra-Enclave Isolation for Confidential Serverless
Computing. In order to integrate TeeMate with Open-
Whisk, we further employed V8 Isolate [54] to isolate the
functions in the same enclave. To be specific, for each request,
TeeMate’s OpenWhisk creates a new container (as usual),
aliases an enclave into the new address space, and runs the
function using a new enclave thread that is sandboxed by V8
Isolate (i.e., TeeMate). Thus, V8 Isolate ensures the threads
cannot access each other’s memory, and we can guarantee
the containers using the same enclave are isolated (as long
as the implementation of V8 Isolate is trusted).
Benchmark Functions. We performed the evaluation with
9 serverless functions written in JavaScript as shown in Ta-
ble 2. We selected the functions from SeBS [64] and Google
Sunspider [29], which cover a wide range of serverless func-
tions that potentially receive sensitive data as input.
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Figure 9. Throughput when 64 concurrent requests are handled.

7.2.1 Performance Improvement of Startup Latency.
Single Latency. We measured the average latency for run-
ning each serverless function as shown in Figure 7. TeeMate
showed 4.54-6.98× latency speedup over the Strawmanmodel
as it eliminates the overheads to create a new enclave for
each function instance (i.e., red portion in the bars). On the
other hand, the latency of EPC aliasing (which is added in-
stead of the enclave creation) was significantly low, ranging
from 2.32 to 3.01 milliseconds (i.e., less than 1% of the entire
latency). Strawmanmodel consumes almost 10 seconds to ini-
tialize an enclave, and load Gramine LibOS and Node.js into
it every time (i.e., “Enclave Creation”). However, TeeMate
does not impose such overheads, and only needs to allocate
new EPC pages for the new function instance, which takes
about 27.4-45.6% of the entire latency.
Throughput. We evaluated the throughput improvement
of TeeMate by invoking a burst of requests simultaneously
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Figure 10. Peak EPC memory usage when 64 concurrent requests
are handled.

and observing the total time to complete all the requests—i.e.,
throughput is computed as the number of requests divided
by the completion time. To this end, we invoked 8 and 64
requests respectively, for each model with each function. As
a result, TeeMate exhibited 1.26-3.21× higher throughput
than Strawman as illustrated in Figure 8 (i.e., 8 requests in-
voked simultaneously), and Figure 9 (i.e., 64 requests). Even
when compared to Native model, TeeMate showed compa-
rable performance by decreasing only 5.5-62% of the native
throughput.

One thing to note is that the throughput gain of TeeMate
decreases as the number of requests increases from 8 to 64.
We suspect it is because the SGX driver internally reserves
a lock [43] when allocating the EPC pages, and the lock
contention increases as the number of concurrent requests
increases. In order to relieve this lock contention, TeeMate
may employ further optimizations such as batch processing
the EPC allocation requests [82], or reusing the allocated
EPC pages. In addition, we want to note that TeeMate can
also create more enclaves for the same function to maximize
the throughput, while we used only one enclave for this
evaluation.

7.2.2 Performance Improvement of Memory Foot-
print. In order to evaluate the memory efficiency of
TeeMate, we compared the peak memory usage of Native,
Strawman, and TeeMate when a bunch of requests are re-
ceived. For each function, we invoked 64 concurrent requests
simultaneously and measured the peak memory usage.
As illustrated in Figure 10, TeeMate showed 2.8-5×

lower memory usage compared to Strawman. This is because
Strawman model needs to load a new runtime (i.e., Gramine
library OS [90] and Node.js [45]) within each enclave, while
TeeMate needs to create only a lightweight V8 Isolate [54]
on top of the shared runtime (in the shared enclave).
On the other hand, TeeMate uses more memory (i.e.,

207MB) than Strawman (i.e., 114MB) when handling only one
request. This is because TeeMate needs additional memory
to accommodate the isolation mechanisms (i.e., V8 Isolate).
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Figure 11. Latency evaluation of confidential database.

7.3 Confidential Database
For the confidential database, we used Redis [49], which is an
in-memory database widely serviced by cloud platforms [74].
Specifically, Redis uses fork-based snapshot [50] to support
data persistence. To be specific, Redis process periodically
forks a child which performs the snapshot by writing the
database into the storage, while the parent continues to han-
dle the requests (i.e., Native). Copy-on-write semantics [23]
are well suited for this mechanism as the full page copy
is performed only when a write request is received to the
parent.
However, running Redis on state-of-the-art confidential

containers cannot employ the copy-on-write semantics as
the parent’s enclave and child’s enclave cannot share the
memory (i.e., Strawman). To be specific, if we run the Redis
on Gramine LibOS [90] as usual, fork from the parent cre-
ates a new child process (outside the enclave) and creates
a new enclave again, then Gramine LibOS would copy all
the memory contents from the parent to the child enclave
to preserve the semantics of fork—i.e., child process inherits
the same memory space as the parent. Thus, the entire pages
are copied on fork without supporting copy-on-write.
Intra-Enclave Isolation for Confidential Database. In
order to integrate TeeMate with Redis, we implemented
software address translation [82] in the Redis, which iso-
lates memory accesses by each process. Especially, after a
child process is forked, two threads from the parent and the
child still run using the same addresses (in the same enclave
with different page tables). However, when a write request
is received, we made Redis to copy the target page and ex-
ecute the request on the copied page (i.e., copy-on-write)
such that the other process cannot see the updated contents
(i.e., TeeMate). This ensures the memory isolation as the
two processes access exactly same physical pages as long
as their contents are the same (which does not harm any
security guarantee).

7.3.1 Performance Improvement of Fork Latency.
Since the fork-based snapshot necessarily forks a child
process, we measured that latency of the Redis process
with different size of database. As shown in Figure 11-(a),
TeeMate showed 277.6-1046.6× latency speedup compared
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Figure 12.Memory usage of each model

to Strawman model. This is because TeeMate does not cre-
ate a new enclave and copy the parent enclave’s memory
to the child, but the two processes can share the memory.
Fork latency in TeeMate consists of the latency to create a
new enclave thread and makes a child process to execute the
enclave thread, which is much faster than enclave creation
and copying the entire memory. In addition, TeeMate takes
the advantages of copy-on-write by which it copies the page
only when a write request is received to the parent.
Throughput. We also evaluated the throughput im-
provement of TeeMate by invoking a burst of requests
while the database performs fork-based snapshot. As a re-
sult, TeeMate exhibited 2.1-14.6× higher throughput than
Strawman as illustrated in Figure 11b. Since Redis cannot
handle any request during the fork system call is handled,
the throughput of Strawman was significantly affected due
to the longer fork latency. On the other hand, TeeMate was
able to achieve better throughput thanks to the short fork
latency and copy-on-write operations.

7.3.2 Performance Improvement of Memory Foot-
print. We evaluated the memory efficiency of TeeMate
by measuring the peak memory usage and overall mem-
ory usage of the Redis while it runs as usual and also per-
forming fork-based snapshots. As illustrated in Figure 12-(a),
TeeMate showed much lower peak memory usage com-
pared to Strawman model as the database size increases.
While Strawman model suffers from large memory footprint
due to the duplicated memory of the parent and child en-
claves, TeeMate avoids such issues thanks to the shared
enclave, showing 41% lower memory usage at maximum.
Meanwhile, when the database size is small, TeeMate

showed slightly larger memory usage because it needs addi-
tional memory for software address translation. In addition,
we observed the memory overhead incurred by the heap al-
locator of Gramine LibOS when creating a new thread [30].

We also evaluated the overall memory usage of eachmodel
as described in Figure 12-(b). For this evaluation, we set the
database size to be 512MB and generated random requests
to the database engine. Additionally, we set the database
engine to create a snapshot once every minute, which is
the same as default configuration of Redis [50]. As expected,
TeeMate showed significantly lower memory usage than
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Strawmanmodel when performing fork-based snapshot oper-
ations. However, in normal situations when not performing
a snapshot, TeeMate showed slightly higher memory usage
due to the aforementioned reasons.

8 Security Analysis
In this section, we analyze the security guarantees of
TeeMate.
Security Guarantees of Sharing an Enclave across Mul-
tiple Processes. While it seems unsafe at first glance to
share a single enclave across multiple processes, it does not
compromise the security guarantees of confidential com-
puting [17]. The key question is that “what if the compro-
mised host enters the enclave in the context of another pro-
cess (different from the one that initially created the en-
clave)?”. This is the same question as “what if the compro-
mised host modifies all the states of a process (except the
memory of the enclave) to be the other one, and enters the
enclave?”. The second question is already the common threat
model of confidential computing, and widely discussed in
the academia [2, 8, 16, 33]. The answer is that “the host can-
not compromise the enclave as all the security critical data
and logic should be located in the enclave”—i.e., the secu-
rity guarantees of the confidential computing (and those of
TeeMate) still hold.

The key is that the code in an enclave should not believe
any information passed over from the outside enclave. In
other words, all the security critical data should be managed
in the enclave, which includes the identity of the client who
invoked the request, TLS encryption key, and the hash of the
files to be checked for integrity. All the security operations
such as decrypting the ciphertext from users, or checking the
integrity of opened file should be performed in the enclave
also, which is the same as the conventional use-cases [90].
For example, if a compromised host runs an enclave thread
in a different containerized environment (that was not sup-
posed to be used), then, access to a security critical, but
different data should be detected in the enclave.
Security Limitations of TeeMate. Compared to the pre-
vious approaches that protect the workloads of each process
using each dedicated enclave [67, 70, 79, 92], TeeMate has
weaker isolation guarantees as it employs intra-enclave iso-
lation. The intra-enclave isolation should be implemented
on software (e.g., V8 Isolate [54]) in case of Intel SGX, while
it can be implemented using the paging mechanism in case
of confidential VMs (e.g., AMD SEV [2], and Intel TDX [33]).
However, we believe TeeMate still achieves the major goal
of confidential computing—i.e., removing cloud providers
from the trusted path. Furthermore, wewant to note that soft-
ware fault isolation (that TeeMate should use in case of Intel
SGX) is already widely used in various real world scenarios
(e.g., WASM sandbox in browser [55], kernel model sandbox-
ing [81]). While these may have vulnerability, TeeMate can

benefit from ongoing researches to improve the software
fault isolation.

9 Discussion
9.1 Applicability to VM based Confidential

Computing
The core observation of TeeMate is that an enclave does
not have to be bound to a process as the enclave is just a
set of physical resources while the process is the abstraction
managed by host kernel. This does not depend on the type
of enclave, and it is also applied to the VM based confidential
computing (e.g., AMD SEV [2], and Intel TDX [33]). This is
because the VM is also a set of physical resources (i.e., virtual
memory and virtual CPU). While Linux kernel manages a
single VM by a single process [37], the VM can be shared as
long as the memory and thread abstractions are preserved.
In this respect, we demonstrate that design primitives of

TeeMate can be applied to AMD SEV-SNP VMs. Specifically,
we check that multiple processes can share the same enclave
pages (i.e., secure pages in AMD terminology) of a single SEV-
SNP VM. In the following, we provide a brief explanation of
access control and address translation mechanism of SEV-
SNP, and then describe how we leverage these mechanisms
to adopt the design of TeeMate in SEV-SNP.
Technical Analysis of SEV-SNP: Access Control and
Address Validation Mechanism. ASID (Address Space
Identifier) is a crucial element of access control mechanism
in AMD SEV-SNP [3]. The ASID serves as a unique identifier
for each VM, and it is used to select a VM encryption key
(VEK). VEK is used for encrypting and decrypting enclave
pages. Thus, only the VM with the correct ASID can access
the enclave pages encrypted with the corresponding VEK.
Importantly, the ASID can be modified at runtime by the
hypervisor during a VMEXIT event [78].
SEV-SNP employs a reverse map table to validate the ad-

dress translation when a VM accesses an enclave page. When
a VM allocates new enclave page, the reverse map table
records the VM’s ASID and the guest physical address of
the page. When the VM later accesses the enclave page, the
hardware checks whether the VM’s ASID and the guest phys-
ical address match the corresponding record in the reverse
map table. This prevents malicious hypervisor from launch-
ing a page remapping attack, similar to purpose of address
translation mechanism in SGX (mentioned in §5.3).
Enclave Page Aliasing in SEV-SNP. Based on above anal-
ysis, we propose a method to alias enclave pages in SEV-SNP
by matching two key pieces of information: i) ASID, and
ii) guest physical address. To share the same enclave pages
(i.e., secure pages of the same VM) between multiple pro-
cesses, the hypervisor should first record the ASID of the
VM which allocates the pages. Then, when another process
attempts to access the page, the hypervisor should assign
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the ASID of the VM that originally allocated the page. Fur-
thermore, the hypervisor needs to assign the same nested
page table to ensure that the enclave page is accessed using
the same guest physical address.

We verify through experiments that our method actually
works in SEV-SNPmachine.Wemodified Linux KVMmodule
to change ASID and nested page table pointer (nCR3) of VM
during VMEXIT event to those of the VM that originally
allocated the page. We will also investigate the applicability
of TeeMate to other confidential VM technologies such as
Intel TDX [33], and ARM CCA [8] in the future work.

9.2 Use-cases of TeeMate
TeeMate enables multiple processes (that are managed by
untrusted host kernel) to efficiently share the data within
an enclave. Thus, this feature can be widely applied to the
confidential computing use-cases that need frequent data
communications, while the resources are managed by un-
trusted host kernel (e.g., micro-service architecture using Ku-
bernetes [39], or big data analysis using Spark [6]). However,
it should be carefully applied as this approach necessarily
bloats the trusted computing base (TCB) by implementing
the control logic in the enclave.

10 Related work
Confidential Container. Confidential container is gaining
popularity due to its ability to meet the needs of efficient re-
source management by cloud providers and data protection
by cloud users using TEE (Trusted Execution Environment).
SCONE [60] is one of the first confidential container system,
which integrates SGX enclave [16] to Docker container [26].
Additionally, the Cloud Native Computing Foundation’s Con-
fidential Container project [15] is actively conducting vari-
ous research related to confidential containers. For example,
the project implements both process-level containers us-
ing Intel SGX [19] and microVM-level containers [18] using
confidential virtual machines like Intel TDX [33] and AMD
SEV [2]. TZ-Container [72] utilizes ARM TrustZone to create
a secure execution environment for each container process.
Although many confidential container system have been
proposed, they have not challenged to the universal miscon-
ception that only one process can use a specific enclave.
Confidential Serverless Computing. Incorporating TEE
with serverless computing is gaining more interests as it pro-
vides strong security guarantees to protect sensitive data and
code even in a compromised environment. Clemmys [89]
uses SGX enclave to block platform provider from intro-
specting the memory, and devised a cryptographic model to
prevent maliciously modifying the order of function chain-
ing from the platform provider. AccTEE [68] and S-FaaS [59]
introduced a fair and trustworthy resource accounting for
confidential serverless computing. SEVeriFast [71] imple-
mented new bootstrap scheme in AMD SEV [2] for low

startup latency in VM-based confidential serverless com-
puting. Reusable enclave [92] achieved low startup latency
in confidential serverless computing by secure enclave reset
mechanism. PIE [79] extends the SGX design through hard-
ware modification to optimize the startup latency and func-
tion chaining latency by memory sharing between enclaves.
Several works have also provided the ground for sharing
memory between the enclaves [66, 93], but all of them need
to modify the hardware, and are not able to be applied to
current platforms. It is worth noting that the memory shar-
ing approaches mentioned above focus on sharing memory
between different enclaves, whereas TeeMate focuses on
sharing a single enclave across multiple containers.
Confidential Database. Confidential database protects
database engine on untrusted cloud so that the confiden-
tiality and integrity of data and queries are guaranteed.
For instance, EnclaveDB [84] used SGX enclave to protect
all database state including the data and query from the
cloud provider. Library OS for Intel SGX such as Graphene-
SGX [90] and Haven [61] are also used to run confidential
database without application modification. OBLIVIATE [58]
proposed data oblivious filesystem to prevent side-channel
attacks against malicious cloud provider toward database
engine.
Intra-Enclave Isolation. For the performance and security
issues, several previous works have suggested to split the
enclave into multiple isolated regions. Chancel [57] protects
the client’s data in application, which handles each client’s
request using dedicated thread. Chancel uses a compiler-
based per-thread isolation inside enclave. Occlum [86] en-
ables multi-process applications to run efficiently inside en-
clave by software fault isolated processes, leveraging Intel
MPX and code instrumentation. These isolation approaches
can also be used for the isolation mechanism of TeeMate,
but we want to note that V8 Isolate is more appropriate for
isolating high-level programming languages that are widely
used in serverless computing (e.g., JavaScript, and Python).
LightEnclave [70] and EnclaveDom [88] leveraged Intel MPK
for fine-grained isolation inside enclave. However, it needs
hardwaremodification under the threat model of confidential
computing as Intel MPK basically depends on host kernel.

11 Conclusion
This paper proposes TeeMate, which introduces a new ap-
proach to utilize the enclaves in the host’s perspective. Espe-
cially, we found there is a universal misconception that an
enclave must be dedicated to a single process that created it,
and we break this assumption by sharing an enclave across
multiple processes. To this end, we design the primitives to
preserve the memory and thread abstraction for a single SGX
enclave to be shared across multiple processes. Based on it,
we implemented confidential serverless computing and con-
fidential database, and demonstrated that TeeMate shows

12



significant latency speedup and memory usage reduction
compared to the same applications using state-of-the-art
confidential containers.
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