
TeeMate: Fast and Efficient Confidential Container using Shared Enclave
Jaewon Hur

Georgia Institute of Technology

• Benefits of Containerization
• Cloud providers manage system resources (e.g., cgroup)

while users focus on their workloads

• Benefits of Confidential Computing
• User’s workloads are protected on potentially compromised (or

even malicious) cloud environment

• Benefits of Confidential Container
• Users can easily protect and deploy their workloads

while cloud providers still manage the system resources

• Performace overheads of Confidential Container
1. Large bootstrap time due to the enclave memory measurement
➢ Need to create every enclave (or cVM) for every confidential

container creation
2. No fork-based bootstrap due to the strict memory management
➢ When creating a confidential container through fork, entire

parent’s memory should be transferred through an encrypted
channel

• Root cause of the performance overheads
• Strict one-to-one mapping of enclave (or cVM) and container

• Our insight
• Actually, they can be separated!
• Separating container (i.e., control plane) and enclave or cVM (i.e.,

data plane)

• By Doing So
• We can host multiple containers with a single enclave (or cVM)
• Cloud providers still manage the resources based on the container
• User’s workloads still protected by confidential computing
➢ But, no bootstrap overheads & Fork based memory sharing

• TeeMate reduces bootstrap latency more than 5 times

• TeeMate designs memory abstraction and thread abstraction such
that different containers of the same enclave have their own view of
memory address space and CPU thread each

• Memory abstraction
• Map the EPC pages of the same enclave to different address spaces

• Thread abstraction
• Arbitrate threads of the same enclave to different containers

• Namespace and cgroup
• Apply to each container as before

• We propose TeeMate, which solves the performance issues of
confidential container with groundbreaking ideas.

• TeeMate breaks the premise that an enclave (or cVM) should be
dedicated to only a single container.

• TeeMate shows that the container abstraction still works while they are
served by a single enclave.

Confidential Container: Inheriting Both Benefits of Container
and Confidential Computing

Motivation: Confidential Container Suffers from Large
Performance Overheads

Breaking the Premise: Separating Control and Data Plane of
Confidential Container

TeeMate: Confidential Container with
Minimal Performance Overhead

Design of TeeMate

Conclusion

Latency of creating new function instance
in confidential serverless computing

Latency of creating a child process for snapshot
in confidental Redis database container

Container 1 Container 2 Container N
…

…
Protection boundary of confidential computing

Single enclave (or cVM)

Cloud SW stack, container orchestration, …

Protected
workload

Protected
function

Protected
database

Key approach of TeeMate

Latency comparison of serverless applications on 1) native serverless framework
(OpenWhisk), 2) strawman, and 3) TeeMate

Latency and throughput comparison of 1) native database (Redis), 2) strawman,
and 3) TeeMate

Mapping EPC pages of the same enclave to
different address spaces

Assigning threads in an enclave to different containers

Reference
[1] TeeMate, https://arxiv.org/abs/2411.11423
[2] Confidential container, https://confidentialcontainers.org

Contact
Jaewon Hur, jwhur19@gmail.com
CV: https://jaewonhur.github.io/files/cv.pdf

