SpecDocToR: Differential Fuzz Testing to Find
Transient Execution Vulnerabilities

Jaewon Hur
Seoul National University
hurjaewon@snu.ac.kr

Sunwoo Kim
Samsung Research
sunwoo028.kim@samsung.com

ABSTRACT

Transient execution vulnerabilities have critical security impacts
to software systems since those break the fundamental security
assumptions guaranteed by the CPU. Detecting these critical vul-
nerabilities in the RTL development stage is particularly important,
as it offers a chance to fix the vulnerability early before reaching
the chip manufacturing stage.

This paper proposes SPECDOCTOR, an automated RTL fuzzer
to discover transient execution vulnerabilities in the CPU. To be
specific, SPECDOCTOR designs a fuzzing template, allowing it to test
all different scenarios of transient execution vulnerabilities (e.g.,
Meltdown, Spectre, ForeShadow, etc.) with a single template. Then
SpEcDocTOR performs a multi-phased fuzzing, where each phase
is dedicated to solve an individual vulnerability constraint in the
RTL context, thereby effectively finding the vulnerabilities.

We implemented and evaluated SPECDOCTOR on two out-of-
order RISC-V CPUs, Boom and NutShell-Argo. During the evalua-
tion, SPECDoCTOR found transient-execution vulnerabilities which
share the similar attack vectors as the previous works. Furthermore,
SpecDocToR found two interesting variants which abuse unique
attack vectors: Boombard, and Birgus. Boombard exploits an un-
known implementation bug in RISC-V Boom, exacerbating it into a
critical transient execution vulnerability. Birguslaunches a Spectre-
type attack with a port contention side channel in NutShell CPU,
which is constructed using a unique combination of instructions.
We reported the vulnerabilities, and both are confirmed by the
developers, illustrating the strong practical impact of SPECDOCTOR.

CCS CONCEPTS

« Security and privacy — Side-channel analysis and counter-
measures;

*Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA.

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9450-5/22/11...$15.00
https://doi.org/10.1145/3548606.3560578

Suhwan Song
Seoul National University
sshkeb96@snu.ac.kr

Byoungyoung Lee”
Seoul National University
byoungyoung@snu.ac.kr

KEYWORDS

transient-execution vulnerability; fuzzing; differential testing

ACM Reference Format:

Jaewon Hur, Suhwan Song, Sunwoo Kim, and Byoungyoung Lee. 2022.
SpecDocToRr: Differential Fuzz Testing to Find Transient Execution Vulner-
abilities. In Proceedings of the 2022 ACM SIGSAC Conference on Computer and
Communications Security (CCS °22), November 7-11, 2022, Los Angeles, CA,
USA. ACM, New York, NY, USA, 16 pages. https://doi.org/10.1145/3548606.
3560578

1 INTRODUCTION

Transient execution vulnerabilities are critical vulnerabilities in
modern CPUs. Since the first disclosure of Spectre [1] and Melt-
down [2], many other transient execution vulnerabilities have been
discovered—ForeShadow [3], RIDL [4], FPVI [5], Cacheout [6], etc.
While such vulnerabilities critically harm the security of software
on the affected CPU, vendors were not able to quickly release the
patch as these are rooted in the micro-architecture of the CPU.
The root cause of these vulnerabilities is highly related to the
speculative execution, which originally intended to maximize the
CPU performance. Specifically, CPU attempts to predict the result
of the earlier instruction, then execute the later instruction specu-
latively under the assumption that the prediction was correct [7].
However, if the prediction was wrong, CPU rollbacks the execu-
tion of the later instruction to preserve the execution correctness.
Here, the rollbacked instructions are called transient instructions.
As this rollback is not visible from the architectural point of view,
transient execution does not harm the execution correctness of
CPU—it only changes the micro-architectural states. The problem
is that various attack techniques have been discovered to learn
the traces in the micro-architectural states due to the transient
instructions. Since these transient instructions are the artifact of
the wrong prediction and thus should not be executed, execution
results of transient instructions may include security sensitive data,
violating the fundamental security isolation guarantees of CPU.
While there have been several previous approaches to automat-
ically detect these vulnerabilities on the off-the-shelf CPUs (i.e.,
CPUs that are already manufactured) [8, 9], approaches detecting in
the RTL development stage have not gained much attention. Detect-
ing in the RTL development stage is particularly important because
it offers a chance to fix the vulnerability early, even before the CPU
chip is manufactured and released. Once it is released, it becomes
extremely difficult to fix as the vulnerabilities are hardwired in the

https://doi.org/10.1145/3548606.3560578
https://doi.org/10.1145/3548606.3560578
https://doi.org/10.1145/3548606.3560578

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA.

chip. Taking x86 as an example, many transient execution vulnera-
bilities are still not fixed (or partially fixed) due to the irrecoverable
nature of the hardware [1, 4-6, 10].

Given the importance of early detection, this paper focuses on
how to employ popular fuzz testing to realize RTL-based detec-
tion of transient execution vulnerabilities. Compared to traditional
fuzzing techniques, we find two unique challenges to perform
fuzz testing for automated identification of the transient execu-
tion vulnerabilities. First, transient execution vulnerabilities can
be launched in various threat models and context settings. To be
specific, all software entities (i.e., a user program, a kernel, or an
enclave) running on the CPU can be the victim or the attacker, as
the vulnerabilities exploit the underlying hardware. Moreover, the
attacks can be constructed in a different way depending on who
performs the transient execution—e.g., the transient execution in
Meltdown [2] is performed from the attacker’s side, whereas those
in Spectre [1] is performed from the victim’s side. Furthermore,
various CPU settings such as page table settings render the problem
even worse (e.g., ForeShadow [3]). These are all unfamiliar topics
in traditional fuzz testing since the traditional fuzzers mainly focus
on how to extend the input coverage, while the threat model and
setting are fairly fixed once the fuzzing target is determined (e.g.,
AFL [11] and Syzkaller [12] mutate file inputs or syscall inputs,
respectively, which do not test different running environments).

The second challenge is that transient execution vulnerabilities
are difficult to detect. As already known, in order to trigger the
vulnerabilities, two general violations should be raised: 1) transient
execution is performed, and 2) micro-architectural side-channels is
constructed. However, we do not know how to explicitly express
these violations into programmable constraints to be asserted in
the RTL context. More importantly, these two violations should be
chained to complete the transient execution attacks, making it even
more difficult to be found.

In this paper, we propose SPECDOCTOR, a tool to automatically
find transient execution vulnerabilities in the CPURTL. SPECDOCTOR
is a full-fledged RTL fuzzer, finding unified transient execution at-
tacks while covering all possible context settings. SPECDOCTOR
solves the aforementioned challenges by following two approaches.
First, SPECDoOCTOR implements a common template to configure
all the threat models and hardware settings. SPECDOCTOR provides
comprehensive configuration options so that all the transient exe-
cution vulnerabilities can be covered on the given template. Second,
based on the configured template, SPECDocTOR designs a multi-
phased fuzzing framework to sequentially solve each violation
constraint of transient execution vulnerabilities. In order to detect
each violation in the RTL layer, SPECDOCTOR monitors a single RTL
structure to detect all the occurrences of transient executions. Then
it implements a differential testing framework to identify micro-
architectural timing side-channels while selectively monitoring
RTL components. Therefore, SPECDOCTOR outputs a complete tran-
sient execution attack PoCs on the target CPU. Using such attack
PoCs, we were able to seamlessly reproduce the vulnerability.

We implemented and evaluated SpEcDocToR on two RISC-V
CPUs, Boom and NutShell-Argo, which are real-world open-source
CPUs implementing out-of-order pipelines. As aresult, SPECDOCTOR
found transient execution vulnerabilities on these CPUs, which
share the similar attack vectors as the discovered attacks [1-3, 13,

Jaewon Hur, Suhwan Song, Sunwoo Kim, & Byoungyoung Lee

14]. Furthermore, SPEcCDocTOR found two interesting attack vari-
ants which exploit previously unknown and unique attack vectors:
i) Boombard on RISC-V Boom, and ii) Birgus on NutShell. All these
vulnerabilities were confirmed by the corresponding developers,
and the Boombard has received a CVE number.

Boombard is a Meltdown-variant in RISC-V Boom. The remark-
able aspect of Boombard is that it exploits an implementation bug in
RISC-V Boom—i.e., the implementation does not follow the specifi-
cation [15]. According to the RISC-V Boom specification, Boom CPU
should not have a side-channel in the branch predictor. However,
SpeEcDocToR found an implementation bug in the branch predictor
logic, which fails to follow the specification, and re-interpreted it
into a critical transient execution vulnerability. Boombard alarms
the hardware engineers that they should not entirely rely on a CPU
specification [16, 17], but verify their RTL implementation to build
a secure CPU.

Birgus is a Spectre-variant in RISC-V NutShell, which constructs
a port contention side channel using a previously unknown gad-
get. We note that the instruction patterns for the port contention
side channel have been widely studied, and those are blacklisted
for mitigation [10, 18]. In this respect, Birgus showcases a new in-
struction pattern which was not identified by the previous work,
implying that the new CPU would still be vulnerable to such an
attack. Hence, Birgus signifies the security risks of a pattern based
hardware verification (e.g., regression testing) and Spectre mitiga-
tion. Although SpEcDocToR does not produce a complete set of
gadgets to be checked, Birgus suggests that we need continuous
verification to stop the transient execution vulnerabilities.

2 BACKGROUND

This section provides background on the transient execution at-
tacks (§2.1) as well as CPU micro-architecture (§2.2), which are
necessary to understand SPEcDocToR. Then, we briefly describe
the basics of fuzzing technique (§2.3).

2.1 Transient Execution Attacks

Transient execution denotes the execution of transient instructions,
which change the micro-architectural states but leave no traces
in the architectural states. Thus, the transient instructions are not
executed from the architectural point of view, it does not harm the
execution correctness of the CPU. However, if the attackers can
learn the micro-architectural states due to the transient instructions,
critical security issues can arise, which is called transient execution
attacks. Specifically, transient execution attacks allow the attackers
to retrieve the secret data by carefully manipulating the transient
execution (e.g., wrong speculation or wrong branch prediction) and
then reading the trace of secret left in the micro-architectural states.
Almost all of the modern CPUs are known to be vulnerable to the
transient execution attacks due to the widely adopted optimization
features, such as out-of-order execution and various speculative
execution features.

Known Transient Execution Attacks. Various transient execu-
tion attacks have been presented from the following aspects: 1) trig-
gering transient execution, 2) accessing secret data, and 3) leaking
the data through a micro-architectural side-channel.

SPECDOCTOR

. =] CPU Micro-architecture [~
Next pc selection -1 -
: Instruction fetch m |meendH Core l [~
Instruction decoding - TLB | FPU l [~
arnmericoperstion — J [icache | Lsufocache |F
- Floating point operation =~ = -
BASRAARAAY
1
Memory operation : N req-valid 1
Y = req-addr %1
& —
Register writeback 1 Sl resp-valid S:
| resp-data = h
1
1
Pipeline bommmmm e
o b CPU micro-
(a) Pipeline stages. (b) .
architecture.

Figure 1: Conceptual pipeline stages and their RTL implementation
in the CPU. Modules in CPU continuously exchange signals for ex-
ecuting an instruction.

In order to trigger transient execution, Spectre or Meltdown-type
of attacks can be launched. Specifically, Spectre-types manipulate
control- and data-flow prediction to trigger the transient execution.
For example, Spectre [1] poisons the CPU’s branch predictor to
trigger transient instructions, and Ret2spec [13] poisons the return
address stack. On the other hand, Meltdown-type leverages deferred
permission checks such as checking flag bits in a page table entry [2],
or a permission to use floating point registers [19].

In order to access secret data, the attackers have to bypass the
security boundaries enforced by a software (e.g., bound check) or a
hardware (e.g., page permission check). Spectre-type attacks bypass
the software enforced security checks by manipulating the control
flow through a transient execution. Meanwhile, Meltdown-types
bypass the security checks enforced by the hardware primitives.
Micro-architectural data sampling (i.e., MDS) attacks can also be
classified into Meltdown-type, where the secret data is transiently
accessed by the shared buffers in a CPU (e.g., line fill buffer [4]).

Finally, in order to leak the secret data, attackers abuse micro-
architectural side-channels. CPUs are known to have various side-
channels including caches [20], branch predictors [21], and even
an execution port [10]. Based on the vulnerable CPU components,
various attack patterns were also proposed to leak the secret in var-
ious environments (e.g., flush and reload, prime and probe patterns
for D-cache side-channel [22]). Even more side-channels are being
continuously disclosed due to the complex and shared nature of
the CPU components [18, 23].

2.2 CPU Microarchitecture

CPU micro-architecture is an RTL implementation of the CPU fol-
lowing a predefined instruction set architecture (ISA). Since the
CPU serves the entire ISA, ranging from a simple arithmetic opera-
tion to the complicated ones such as a virtual memory translation,
it is built with a huge number of components and logics.

CPU Pipeline Implementation. CPU serves a given instruction
through distinct pipeline stages (e.g., fetch, decode, execute, etc.),
and the conceptual pipeline stages are materialized into the RTL
modules in the CPU. For example, as shown in Figure 1, next pc
selection and instruction fetch (i.e., fetch in Figure 1-(a)) are han-
dled in the CPU Frontend of Figure 1-(b), arithmetic operations (i.e.

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA.

Differential

Interesting behaviors Q testing
o

N\
Save to seed corpus

Seed II Mutation
I engine
Mutation algorithms

Figure 2: General workflow of differential fuzz testing.

Program A

Mutated
input

Program B

execute in Figure 1-(a)) are performed in the Core, and the memory
requests (i.e., memory in Figure 1-(a)) are served by the load-store
unit (i.e., LSU) and DCache. Thus, an instruction is sequentially pro-
cessed in each stage while the modules are concurrently working
to complete the assigned job (e.g., fetching instruction).

Meanwhile, modules in CPU are interconnected through the
wires so that they can exchange the signals for serving the instruc-
tions. In particular, modules exchange control signals to indicate the
presence of a request or a response. For example in Figure 1-(b), the
LSU asserts the req-valid signal to inform the DCache of the mem-
ory request, while the req-addr carries the requested address. Then,
the DCache responds to the request by asserting the resp-valid sig-
nal upon the preparation of the data on the resp-data signal. De-
pending on the location of data (i.e., on L1-, L2-cache, or memory),
the assertion of the response would be either delayed or advanced.
As such, the communication of the control signal indicates a com-
pletion of an assigned pipeline stage.

Out-of-order Execution and Reorder Buffer. Modern CPUs
adopt out-of-order execution for high performance. While the in-
structions should come in effect sequentially from the architectural
perspective, the CPU can internally serve the instructions out-of-
order. In the out-of-order CPU, instructions which have resolved
all the needed operands can be issued immediately so that they can
be served earlier. Meanwhile, the CPU maintains the architectural
order of the instructions by queuing the fetched instructions in
reorder buffer (RoB) sequentially. The RoB guarantees the order by
saving the instructions and sequentially retiring them, thus making
them visible to the programmer.

However, the RoB cannot retire all the instructions queued into
it, since some instructions should not be performed in ISA seman-
tics (i.e., transient instructions). On occurrence of such transient
instructions (e.g., branch misprediction), RoB flushes the entries in
the queue behind the triggering instruction (e.g., branch instruc-
tion) and rolls back the queue tail to the correct point. Thus, RoB
works as a single synchronization point for the instructions while
the transient instructions are triggered by various parts in the CPU.

2.3 Fuzzing

Fuzzing is arguably the most effective technique for finding bugs
in software programs. The key idea behind fuzzing is simply to
repeat generating a random input and testing a target program.
While iterating the loop, the fuzzer saves the inputs which trigger
interesting behaviors (e.g., extend code coverage) and mutates them
to further find the corner cases. Starting from the AFL, fuzzers have
found huge amounts of bugs from various programs such as a
kernel [12], hypervisor [24], or even a CPU [25].

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA.

Differential Fuzz Testing. Fuzzer requires a detection mecha-
nism to identify the bug, i.e., abnormal behavior. Though the abnor-
mal behaviors such as memory corruption can easily be detected
by memory error detectors (such as ASAN [26]), it is difficult to
identify semantic bugs as those do not exhibit apparent abnormal
behaviors. Thus, previous works on identifying semantic bugs have
leveraged the differential testing, which compares the results of
multiple programs with the same purpose (e.g., file system [27],
JVM [28]). Since these programs are supposed to return the same
results for the same input, we can confirm that it is a bug if they
show different input-output relations. Incorporating the differential
testing into the fuzzing (i.e., Figure 2), the differential fuzz testing
has been widely used to find bugs in programs such as file systems.

3 CHALLENGES IN SPECDOCTOR

Finding transient execution vulnerabilities impose two challenges
inherent to the unique characteristics of the vulnerabilities. The
first challenge is that the vulnerabilities have various threat models
and settings (C1). The second is that those have no vulnerability
constraints defined in the RTL context (C2). In the following, we
elaborate these two challenges in turn.

C1. Various Threat Models and Settings. Ever since Spectre
and Meltdown have been discovered, many more transient exe-
cution vulnerabilities have been discovered under various threat
models (i.e., privileges of victim and attacker) and various context
settings (i.e., a memory setup, or disabling/enabling SMT) [1, 2, 5, 6].
This suggests that in order to completely detect transient execution
vulnerabilities, SPEcDocTOR should generalize all possible configu-
rations, including threat models, memory settings, and the context
of the transient execution.

For instance, let us take the examples of Spectre-like and Meltdown-
like vulnerabilities to highlight this challenge. In the case of Spectre-
like vulnerabilities, SPECDocTOR should be configured as follows:
(i) a threat model: the kernel is a victim and the user is an attacker;
(if) a memory setup: a page table should be configured to pro-
hibit the user from accessing kernel’s memory; and (iii) a context:
the transient execution should be launched from the victim’s con-
text. In the case of Meltdown-like vulnerabilities, on the contrary,
SpeEcDocToR should be configured as follows: (i) a threat model: the
same as Spectre-like vulnerabilities; (ii) a memory setup: kernel’s
memory should be protected, but it should be mapped in the same
address space of the user; (iii) a context: the transient execution
should be launched from the attacker’s context.

Furthermore, this challenge becomes even more crucial, as the
underlying hardware has a huge number of available configura-
tions (e.g., enclave, SMT, or page table flag settings). For example,
Foreshadow [3] found the attack can be launched on the enclaves
through the similar mechanism as Meltdown. Medusa [8] intro-
duces a variant of ZombieLoad [29] which exploits a different CPU
buffer.

C2. Detecting Vulnerability Constraints in RTL. Memory cor-
ruption bugs have a fairly simple vulnerability constraint (i.e., a
memory instruction should access a valid memory region), so the
conventional fuzzing techniques leverage this simple constraint to
detect the bugs [11, 30].

Jaewon Hur, Suhwan Song, Sunwoo Kim, & Byoungyoung Lee

However, transient execution vulnerabilities are semantic vul-
nerabilities, which do not have explicit constraints in the RTL layer
to detect the violations. Worse yet, such vulnerabilities can be
launched through diverse instructions with different root causes,
which makes it difficult to formulate them into general easy-to-
detect constraints. To be specific, previous works [9, 31] roughly
sketched the constraints of the transient execution vulnerabili-
ties as follows: (i) attacking instructions are transiently executed;
(ii) attacking instructions construct a micro-architectural timing
side-channel, thus leaking the secret data. These constraints state
the high-level characteristics of transient execution vulnerabilities,
but it is unclear how to interpret these constraints from the RTL
context.

Taking the example of the constraint (i), the transient execution
can be raised by various RTL components—e.g., the branch predic-
tion, load-store page fault, misaligned access instruction, etc. Since
each of these causes is implemented in different RTL components,
it is unclear how to comprehensively detect the constraint (i). More-
over, the constraint (ii) can be satisfied by various RTL components
because there can be various timing side-channels in the CPU—e.g.,
data and instruction cache, TLB, branch predictor, etc. As men-
tioned before, it would be challenging for SPEcDocTOR to detect
the violation of constraint (ii) from all different RTL components.
Approaches of SPECDoOCTOR. In order to address aforementioned
challenges, we design SPEcCDOCTOR based on the following two ap-
proaches. In order to address the first challenge (i.e., C1), SPECDOCTOR
provides a common template for configuring all the hardware set-
tings (e.g., virtual memory), and it configures the attack by select-
ing a set of configurations (i.e., threat model, and context of the
transient execution). SPECDOCTOR comprehensively defines config-
uration options so that entire transient execution vulnerabilities
can be covered (more details in §4.1).

To handle the second (i.e., C2), SPECDOCTOR first leverages the
key RTL component to detect transient execution, i.e., the constraint
(i). This allows SPECDOCTOR to monitor a single RTL component
to capture all transiently executed instructions. SPECDOCTOR also
takes a differential testing approach while selectively monitoring
RTL components that can construct a timing side-channel, so that
it can detect the constraint (ii). More importantly, SPECDOCTOR
performs a multi-phased fuzzing (more details in §4.2, §4.3, and
§4.4), where each phase detects the constraint violation and all
phases are sequentially chained together, allowing SPECDOCTOR to
efficiently find transient execution vulnerabilities.

4 DESIGN OF SPECDOCTOR

SpecDocToRr is a fully automated CPU RTL fuzzer to find tran-
sient execution vulnerabilities. Given the CPU RTL, SpEcDoCTOR
automatically tests all the possible configuration options and finds
concrete PoCs of transient execution attacks, which can faithfully
confirm the vulnerabilities.

Overview. In order to systematically find transient execution vul-
nerabilities, we design SpEcDocToRr with four phases as shown
in Figure 3. In phase 1, SPEcDocTOR defines an attack by selecting
a set of configuration options such as the threat model and the con-
text of transient execution. Then the base template is configured to

SPECDOCTOR CCS 22, November 7-11, 2022, Los Angeles, CA, USA.
g
Phase 1 . Phase 2 . Phase 3 " Phase 4
" (configuration) " (transient-trigger) " (secret-transmit) " (secret-receive)
entry: entry: entry: entry: entry: entry: entry:
Set privilege Set privilege d d k| I d o PoC.S
D\ | Setvirtualmem. | TN |Setvirtual mem. target: D\ [itarget: : 1T
A P\ "fadd s0, 123 ..transient... | " i iw to, (secret) ; receive: D | receive: entry:)
: H I bez s0, target Id a0, 0(t0). q H Ib t0, 4(t1) 1. trigger transient
\/I/— read cycle execution

target:

" Attack \—1l/(;;neration
" configuration

Meltdown "

Trans'x(

execution "
triggered ?

add s0, 123
bez s0, target
nul a0, s0, al

RTL sim.

RoBLog
Analyzer

RoBLog
I I rr,0p,tpc,
cpc,wsz

Seed for phase 3
transient-trigger

ration

o

Mutation

Gene

2. access secret
3. transmit secret
receive:

4. receive secret

Jr——

e /
Diversifying attack patterns

Figure 3: SPEcDocTOR fuzzer framework for finding transient execution vulnerabilities.

Base
M Phase 1
20 * Memory layout
- - E setting
Variables Options 2 code | \© Isolation setting
=
Context of o o
; 'ontex N i Attacker, Victim 2 Populated by
ransient execution g data | | phase 2,3,4
. - i o
Privilege Vietim TM . S : g g |Protected by
Attacker | ST, U* U secret[hardware primitives

M Machine, st Supervisor, U¥: User

(b) Configured memory lay-
out and hardware protec-
tion.

(a) Example attack scenarios on
RISC-V ISA.

Figure 4: Configurations in SPECDoOCTOR phase 1.

appropriately set the virtual memory and hardware primitives for
protecting the secret.

Given the template, SPECDOCTOR sequentially solves the key vul-
nerability constraints so that it finally outputs concrete transient
execution attack PoCs. In phase 2, SPEcDocTOR finds instruction
sequences which trigger a transient execution. Then phase 3 ran-
domly generates transient instructions based on the testcases from
phase 2, so as to find the instructions which transiently access
and transmit a secret. Finally in phase 4, SPECDOCTOR completes
the transient execution attacks by finding instructions which can
receive the secret transmitted from phase 3.

4.1 Phase 1: Attack Configuration

Since the transient execution attacks can be performed in various
environments, SPECDOCTOR tests all possible attack scenarios by se-
lecting all different attacking context and privileges for the attacker
and the victim. The possible options are summarized in Figure 4-(a).
In this phase, the key design consideration is to enable SPECDOCTOR
to test all possible attack scenarios while avoiding unnecessarily
complex options.

Context of Transient Execution. Transient execution attacks
can be performed from two different contexts—either the attacker’s
context or the victim’s context. Since these contexts impact how
the attack would be launched (i.e., SPECDOCTOR has to set the right
privilege), SPECDocTOR offers the configuration options to spec-
ify the context of transient execution. Taking the example of the
attacks originating from an attacker’s context, Meltdown or MDS

are triggered when executing the attacker’s code. Taking the exam-
ple of the victim’s context, transient execution is triggered when
executing the victim’s code.

Privileges of Attacker and Victim. SpEcDocTor offers config-
uration options which specify privileges of the attacker and the
victim. In RISC-V, three different privileges are available: machine,
supervisor, and user, where each corresponds to the enclave, kernel
and user processes. Here, we assume the victim always has the
higher privilege than the attacker. This is because the attacker’s
goal is to retrieve secret data in a higher privilege domain, which
is not allowed to be accessed by the privilege design. Different
isolation primitives for protecting secret are used depending on the
victim’s privilege.

Initial Memory Sections. Then, SPECDOCTOR initializes the mem-
ory sections, as it basically runs a program on a bare-metal CPU.
SpeEcDocToR physically allocates four memory sections as in Fig-
ure 4-(b): boot, code, data, and secret section. In the boot section,
SpEcDocTOR places the initial configuration code, such as enabling
and initializing the virtual memory layouts as well as setting up the
trap vectors. When initializing the virtual memory, SPEcDocTOR
configures the page tables to enable supervisor and user mode
programs to run in its own address space. SPECDOCTOR randomly
assigns the flags (i.e., read, write, execute, and user) to each page in
memory section so that it can test all possible page table settings.
The code section is left empty from this phase, as it will be pop-
ulated later with the fuzzed instructions (§4.2). The data section
contains random normal data which is randomly loaded or stored
in the following phases, and the secret section is later populated
with secret data for differential testing (§4.3).

Isolation Enforcement on Secret. After setting the memory
layout, SPEcCDOCTOR protects the secret pages using the hardware
primitives. We use different hardware primitives depending on the
privilege of the victim.

Following the RISC-V ISA [32], for the machine mode victim,
SpEcDOCTOR protects the secret pages using PMP. For the supervi-
sor mode victim, SPECDOCTOR protects the secret by only removing
the user flag in the page table entries of the secret section. The
page table is also protected from the user mode attackers.

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA.

4.2 Phase 2: Triggering Transient Executions

With the initial configuration from phase 1, phase 2 finds instruc-
tions which trigger a transient execution through fuzzing—We
call such instructions transient-trigger instructions. To this end,
SpEcDOCTOR populates the code section with random instructions.
Moreover, SPECDOCTOR designs a monitor to detect the transient
execution while running the fuzzed instructions.

Populating Random Instructions. SpEcDocToR populates ran-
dom instructions in following two steps: 1) random control flow
graph (CFG) generation, and 2) random opcodes encoding and
operands embedding. For the CFG, SPEcDocToR randomly con-
structs a directed graph of basic blocks, then it randomly assigns
all sorts of control flow instructions (i.e., branch, direct and indirect
jump, call, and return) to connect the basic blocks. Then, each ba-
sic block is filled with random instructions which include random
opcodes (e.g., add) and operands (e.g., r®, rl) from the ISA. The
maximum number of basic blocks and instructions in each basic
block can be configured before running the fuzzer. Then for each
generation, SPECDOCTOR picks those numbers uniformly at random
in the range between one and the maximum.

To randomly pick the opcodes and operands, SPECDOCTOR ac-
cepts a dictionary, which lists all the legitimate mappings of the
opcodes and operand formats (i.e., RISC-V ISA [32, 33]). Specifically,
SpEcDocToR randomly picks an opcode from the table (e.g., add
immediate opcode addi). Then, it randomly embeds valid operand
values using the dictionary (e.g., destination register rd, source
register rs, and immediate value imm). In most cases, SPECDOCTOR
generates correctly formatted instructions, but it also randomly
generates wrong-formatted ones so as to test the case of decoding
errors. In particular, the memory and control flow opcodes need
a valid target address, but SPEcCDocTOR does not constrain the ad-
dress so that it can test various architectural exceptions (e.g., load
access fault, or misaligned jump). Meanwhile, all the exceptions
are caught by the trap vectors registered in phase 1. SPECDocTOR
also reuses the operand values across the instructions so that the
generated instructions micro-architecturally affect each other (e.g.,
branch instruction resolved long after the fetch due to the pre-
ceding instructions). In phase 2, SPECDOCTOR generates random
instructions without coverage feedback.

Detecting Transient Execution. In order to detect transient ex-
ecution, SPECDoOCTOR monitors internal micro-architectural CPU
states. This is because transient execution is not observable outside
the CPU (i.e., §2.1), as it is the nature of transient execution. The
challenge here is that transient execution can be triggered by vari-
ous CPU components (e.g., branch predictor, LSU, MMU], etc.), so
SpEcDoCTOR may need to monitor all of such micro-architectural
behaviors at runtime.

Instead, we leverage the operational characteristic of RoB [7] to
minimize the monitoring costs. To be specific, RoB synchronizes all
the transient instructions executed in the CPU. Upon the occurrence
of transient execution, RoB is always involved to rollback its queue
to maintain a correct order of instructions, regardless of the CPU
component which triggers the transient execution. In this respect,
we manually embed logic into the RoB which monitors and reports
the occurrence of a rollback event, thus notifying an occurrence
of a transient execution. We note that the RoB is a part of general

Jaewon Hur, Suhwan Song, Sunwoo Kim, & Byoungyoung Lee

implementation of an out-of-order CPU, which can be found in
major CPUs such as Intel [7].

RoB-Feedback Analysis. The embedded logic continuously mon-
itors RoB rollback events while SPECDOCTOR runs the random test-
cases on the RTL simulated CPU. For each rollback event, the logic
reports RoBLog which contains following information: 1) rr, a roll-
back reason (e.g., branch misprediction), 2) op, opcode of the trigger-
ing instruction (e.g., bez), 3) tpc, first pc of the transient instructions
(e.g., mispredicted target), 4) cpc, correct pc after flushing transient
instructions (e.g., correct branch target), and 5) wsz, elapsed cycles
from the start of transient instructions until the rollback.

Then, SpEcDOCTOR analyzes the RoBLog and saves the corre-
sponding testcase based on two criteria. First, the testcase may
suggest a new attack vector (i.e., a different combination of rr and
op). SPECDOCTOR saves the testcase since itself can be a variant
of a transient execution vulnerability. Second, if the testcase has
an already found attack vector, SPECDOCTOR prioritizes a testcase
with larger transient window size (i.e., wsz), because it improves
the chance of success for the attack [9].

4.3 Phase 3: Accessing and Transmitting Secret

Given the transient-trigger instructions found by phase 2, phase 3
finds the instructions which are transiently executed, but access
and transmit the secret through a micro-architectural timing side-
channel.

The basic idea is to monitor CPU’s micro-architectural states
and check if the states are changed depending on the secret. The
challenge executing this idea is that it is costly to monitor en-
tire micro-architectural states. Furthermore, monitoring the entire
micro-architectural states would incur large false-positives, as a
large portion of CPU components are only used for conveying
the data, not affecting the execution time of instructions. Thus,
SpEcDocTOR designs two sub-steps for this phase 3, combining
static and dynamic analyses. First, SPECDOCTOR performs the static
analysis to find candidate RTL components (which we call timing-
change components) that may have potentials to trigger timing
side-channels. Next, SPECDOCTOR performs the dynamic analysis,
particularly a different testing. Monitoring only the timing-change
components at runtime, this testing finds concrete transient instruc-
tions which transmit a secret through the timing-change compo-
nents (i.e., secret-transmit instructions).

Statically Finding Timing-change Components. Given the
CPU RTL source code, SPEcCDocTOR compiler finds all the timing-
change components which can potentially be used as a timing side-
channel. In order to statically identify such components, SPECDOCTOR
relies on the insight that the control signals (i.e., valid signals
in §2.2) can change the instruction execution time. To be specific,
since the valid signals indicate the presence of a request or a re-
sponse, the assertion timings of such signals affect the module’s
following behaviors and affect the instruction execution time. Thus,
we assume that the stateful components (i.e., registers and memo-
ries) wired into the high-level module’s valid signals can be used as
a timing side-channel, as their states can induce timing difference.
For example, Figure 5 illustrates a part of simplified logic inside
a DCache of Boom CPU [34]. The DCache has two memory com-
ponents, tag array and data array. The tag array stores high

SPECDOCTOR

LSU Memory
.- -

req_addr :

D-Cache

tag array data array

index

D

req_addr

tag

resp_valid S« \offset >

resp_data D« align
Figure 5: Simplified logic of DCache in RISC-V Boom CPU. tag array
is indirectly wired into the valid signals.

req_valid

Timing-change
memory or register

M (High-level module) 4p, I
m, & m, P3
P2 ‘7Vu 134 m;4 Ps @
S :
' o 02 13 hash_reg spdoc_on |

(a) High-level module contain- (b) Hash computation for sum-
ing four timing-change compo- marizing the timing-change
nents. component’s state.

Figure 6: Data-flow analysis and instrumentation by SPEcDocToR
compiler.

bits of a memory address, while the data array stores the mem-
ory data. When a memory read/write request comes from the LSU
through the req_addr (i.e., a requested address, D), DCache first
compares req_addr with the bits stored in the tag array (@). If
the address matches, DCache responds to the LSU by 1) asserting the
resp_valid signal, 2) locating the corresponding data value stored
in data array, and 3) sending the located data through resp_data
(®). On the other hand, if the address does not match, DCache sends
a request to the Memory first (@), and later responds to the LSU af-
ter fetching the requested data. Thus, depending on whether the
tag array contains a matching address or not, it would lead to
the DCache timing side-channel by affecting the resp_valid signal,
while the data array does not.

Based on this insight, SPECDocTOR designs a backward data-flow
analysis to identify all the timing-change components which are
wired into the high-level module’s valid signals. Given a high-level
module and its valid ports, the analysis returns all the timing-
change components using the graphs parsed from the RTL source
code. More specifically, the analysis visits entire modules under
the high-level module, where SPECDocTOR performs the backward
slicing for each module. Taking Figure 6-(a) as an example, given the
high-level module (i.e., M) which has child modules (i.e., mg, m1, and
mg), the analysis returns all the stateful components (i.e., ng, n, n,
and n3) wired into the valid port (i.e., po).

Dynamically Finding Secret-transmit Instructions. After stat-
ically identifying the timing-change components, SPEcDocTOR
dynamically finds secret-transmit instructions which transmit a
secret through the timing-change components. To be specific,
SpecDocToR randomly generates transient instructions on top of
the testcases from phase 2, using the algorithm explained in §4.2.

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA.

Then it runs RTL simulations to detect whether the instructions
change the micro-architectural states of the timing-change compo-
nents depending on a secret value. Since the states of the timing-
change components can affect the execution time of instructions,
their states could possibly be observed later to infer the transmitted
secret value.

To this end, SpEcDocTOR designs a differential testing frame-
work, which compares the status of the timing-change components
after running two RTL simulations with the same transient instruc-
tions but with different secret values (i.e., data of secret section).
Note that only the secret section is different while both RTL sim-
ulations and all the memory sections (i.e., boot, code, data) are
initialized to be the same. Thus, SPECDOCTOR can confirm that the
different states originate from the different secret data. In other
words, SPECDOCTOR can determine if a secret is transmitted by
checking if a given testcase results in different micro-architectural
states of the timing-change components.

In order to observe the micro-architectural states of the timing-
change components, SPECDOCTOR automatically instruments each

component and provides an interface (e.g., memory-mapped spdoc_addr)

to observe their states. To be specific, SPECDOCTOR instruments a
logic as shown in Figure 6-(b), which prints out the summary of
micro-architectural states (i.e., hash_reg) when a dedicated sig-
nal (i.e., spdoc_on) is asserted. Upon the assertion of the spdoc_on
signal, all the memory lines (or registers) of the timing-change com-
ponent are iteratively hashed into hash_reg, and the final hash_reg
value is printed out, which summarizes the entire state of the com-
ponent. Then, we modified the RTL simulation testbench to assert
the spdoc_on signal when a testcase indicates it through the given
interface (e.g., store to spdoc_addr).

In this way, SPECDOCTOR observes the micro-architectural states
of the components after running randomly generated transient
instructions. For example, given the testcase and corresponding
RoBLog as shown in the left part of Figure 7, SPECDOCTOR first
embeds randomly generated instructions at the start pc of the tran-
sient instructions (i.e., tpc in RoBLog) so that they are transiently
executed (D). Then, SPEcDocTOR embeds the instructions for ob-
serving the micro-architectural states (i.e., hash-measure instruc-
tions which store to spdoc_addr) at the correct pc after flushing
the transient instructions (i.e., cpc, @). Since the instructions at the
correct pc are executed right after flushing the transient instruc-
tions, SPECDOCTOR can observe the micro-architectural states right
after the transient execution. Note that embedding the instructions
between tpc and cpc does not affect triggering the transient ex-
ecution, because the transient execution is only triggered by the
preceding instructions.

Mutating Random Instructions. Unlike the phase 2, SPEcDocTOR
employs a unique fuzzing feedback in this phase to find various
secret-transmit instructions. To be specific, SPECDOCTOR maintains
a corpus which saves the testcases triggering the state differences,
and randomly mutates one of them to generate a new testcase. For
mutating the testcase, SPECDOCTOR applies per-instruction muta-
tion algorithm, which randomly replaces, removes, or appends an
instruction in the given testcase. The random instructions are con-
structed as explained in §4.2 (i.e., opcode encoding and operand

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA.

Testcase

la x21, data0
1w x19, 4(x21)

I
:
@ bne x20, x21, LO

la x25, secret

address Testcase
0x1000

RoBLog
la x21, data0 rr: branch
1w x19, 4(x21) misprediction
bne x20, x21, LO| op: bne

: 18. %19, x4 tpc:0x1010

Secret-transmit
J| cpc: oxa01¢

x22, x23, i 1b x24, 0(x25) instructions
, datag @ wsz:72 | add x23, x22, x4 i
) 21, x18, 0 - ! s11 x25, x23, x21 i
0x101CJLu? amoadd.d x20, 1(x23) 207 1a a0, spdoc.addr Hash-measure
div x20, x19, x23 addi gp, zero, Ox! instructions
xori x18, x20, 0x21 sd gp, 0(a0)
Phase 2 Phase 3

Figure 7: Testcase with RoBLog from SPEcDoCTOR phase 2 (left), and
secret-transmit, hash-measure instructions generated from phase 3
(right). rr: RoB rollback reason, op: opcode of triggering instruction,
tpc: start pc of transient instructions, cpc: correct pc after flushing
transient instructions, and wsz: transient window size.

embedding). Meanwhile, SPECDocTOR only mutates the instruc-
tions in the transiently executed part (i.e., tpc in RoBLog) so that
the mutation does not affect the earlier phases (e.g., triggering the
transient execution).

4.4 Phase 4: Receiving Secret

Given the secret-transmit instructions, phase 4 finds secret-receive
instructions, which receive the secret through timing side-channels.
To be specific, we design yet another differential testing, which
executes a testcase twice with different secret and compares CPU
cycles taken. When running these two testcases, all inputs are
initialized to be the same (i.e., instructions and memory sections)
except the secret section. In this way, SPECDOCTOR ensures that the
cycle differences of the executed instructions are only depending
on the secret data.

Finding Secret-receive Instructions. In order to find secret-
receive instructions, SPECDOCTOR embeds randomly generated in-
structions in the receive part of the code section, and measures
the cycle count before and after executing the instructions. The
testcase template has the receive part to be executed after all the in-
structions from phase 1 to 3, so that the secret-receive instructions
are executed after the states of the timing-change components are
changed by the secret-transmit instructions. Also, the instructions
are executed only with the attacker’s privilege, as the secret recep-
tion is only performed on the attacker’s side. Then, SPECDOCTOR
compares the difference of the measured cycle counts (i.e., instruc-
tion execution time) between the RTL simulations and determines
the secret is received if those are not the same.

Eventually, the entire assembly file which 1) triggers a transient
execution, 2) transiently accesses and transmits a secret value, and
3) receives it is saved as a PoC of a transient execution attack.

5 IMPLEMENTATION

SpEcDocTOR implementation consists of 1) an RTL logic for moni-
toring RoB rollback events, 2) an RTL compiler for detecting and in-
strumenting timing-change components, and 3) a fuzzer framework
to find transient execution vulnerabilities. The current implementa-
tion of SPECDOCTOR is applied to two CPUs, RISC-V Boom [34] and
NutShell [35] CPUs, but the design of SPECDOCTOR can be applied
to other out-of-order CPUs (see more in [36, 37]).

Rollback Monitoring Logic. We manually embedded a rollback
monitoring logic in RISC-V Boom and NutShell with 160 and 79 LoC

Jaewon Hur, Suhwan Song, Sunwoo Kim, & Byoungyoung Lee

of Chisel [38], respectively. To be specific, the implementation con-
tains a logic for detecting the rollback, reading the rollback reason
(rr), calculating the transient window size (wsz), and remembering
the RoBLog related information (i.e., op, tpc, and cpc). It is worth
noting that the monitoring logic is transparent, and thus it does
not change the original behavior of the target CPUs.

RTL Compiler for Timing-change Components. In order to
detect and instrument timing-change components, we implemented
a pass in FIRRTL [39] compiler which is used for compiling Chisel
source code into Verilog files. The implementation contains i) 1,000
LoC in Scala, performing the static analysis to find the timing-
change components and ii) 500 LoC in Scala, instrumenting the
components.

Dynamic Fuzzer Framework. We implemented all the fuzzing
phases with 2,500 LoC in Python, which include generating ran-
dom testcases, running RTL simulations, and analyzing the simula-
tion results. Then we modified the RTL simulation testbench (i.e.,
Chipyard [40] for RISC-V Boom, and NutShell-SoC [35] for RISC-V
NutShell) for asserting the spdoc_on signal.

6 EVALUATION

In this section, we evaluate SPECDoOCTOR from various aspects of

the design. To this end, we answer the following research questions:

(1) Can SpecDocTor find various instruction sequences triggering
a transient execution? (§6.2)

(2) Can the SpEcDocTOR compiler find various timing-change com-
ponents with a reasonable overhead? (§6.3)

(3) Does the multi-phased design of SPEcDocTOR help quickly find-
ing entire transient execution attacks? (§6.4)

(4) Can SpecDocToOR find real-world transient execution vulnera-
bilities? (§6.5)

6.1 Evaluation Setup

We evaluated SPECDOCTOR on two open-source out-of-order RISC-V
CPUs: Boom [34] and NutShell [35].

RISC-V Boom. Boom implements out-of-order pipelines with
20k lines of Chisel, and it has comparable instructions per cycle
(IPC) performance to the ARM cortex-A72 core [41]. Boom supports
RV64G ISA [33] which includes all privilege levels (i.e., machine,
supervisor, and user) and the CPU contains various RTL modules
(e.g., issue queue, RoB, and branch predictors).

RISC-V NutShell. NutShell is a configurable RISC-V CPU which
implements out-of-order pipelines with 13k lines of Chisel, and it
also supports RV64IMAC ISA [33] with all privilege levels. Since
NutShell does not implement PMP [32] used for protecting an
enclave, we did not test the attack scenario with the enclave level
victim on this CPU.

Fuzz Testing Environment. We evaluated SPECDOCTOR using
the software RTL simulator, Verilator. In order to run the bare-
metal binary on the CPU, we slightly modified the corresponding

simulation frameworks (i.e., Chipyard [40] for Boom and NutShell-SoC [35]

for NutShell). For the instruction generation, we set the maximum
number of basic blocks as 7, and the maximum number of instruc-
tions per each basic block as 10. All the fuzzing experiments were
carried out on a machine of Intel Xeon Gold 6209 with 40 CPU

SPECDOCTOR

Table 1: Transient executions in RISC-V BOOM and NutShell dis-
covered by SPEcCDOCTOR phase 2. rr: RoB rollback reason, op: op-
code of triggering instruction, cpu: found cpu which contains the
corresponding transient-trigger instructions (i.e., boom, nutshell, and
both).

Type ‘ rr ‘ op ‘ cpu
PMP violation Load/Store | 1d, st | boom

Arch. VM violation Load/Store | 1d, st | both
Misaligned access | Load/Store | 1d, st | both

both
boom

Control flow misprediction
Load-store bypass violation

j, br

Micro.
icro. 1d

Table 2: Timing-change components found by SPEcDocTOR in both
RISC-V Boom and NutShell. The table partially shows the entire re-
sults due to a space limit.

CPU . Timing-change
L. Operation
pipeline component

Branch prediction bim, btb
Return address prediction ras

Frontend . .
Virtual memory translation | tlb-tag
Instruction fetch icache-tag
Architectural registers registers, checkpoint
Register renaming rename-map
Configuration registers csr

Backend & g

Instruction issuing
Virtual memory translation | tlb-tag
Data fetch

issue-queue

dcache-tag

cores and 512GB RAM, which runs Ubuntu 18.04 LTS. We ran
SpeEcDOCTOR for more than one week for the evaluation.

6.2 Triggering Transient Executions

In phase 2, SPEcDocTOR found various transient-trigger instruc-
tions, and the results are summarized in Figure 1.

Types of Transient Execution. We classify the found transient-
trigger instructions based on two general root causes: 1) an architec-
tural type, which are defined in the ISA, and 2) a micro-architectural
type, which are not defined in the ISA and caused by a CPU’s micro-
architectural implementation.

In the architectural type, SPECDocTOR found that all load-store
instructions trigger a transient execution if the instruction raises
an exception. However, exceptions related to instruction fetch and
decode do not trigger a transient execution. This is expected results
considering the design of general CPU pipelines—while the excep-
tion condition for load-store instructions are noticed late in the
pipeline, that of fetch and decodes instructions are noticed early.

In the micro-architectural type, SPEcDocTOR found two sources
of a transient execution in RISC-V Boom: 1) control-flow mispre-
diction, and 2) load-store bypass violation. Interestingly, atomic
memory instructions also trigger an RoB rollback, but current
RISC-V Boom implementation does not transiently executes the
instructions after the atomic memory instruction (i.e., transient
window size is 0). In RISC-V NutShell, SpEcDocToR only found that
a control-flow misprediction triggers a transient execution.

6.3 Finding Potential Side-Channels

SpEcDOCTOR statically finds timing-change components which are
connected to the valid signals. As explained in §4.3, timing-change

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA.

Table 3: Static and dynamic overheads of SPEcDocTOR. Numbers in
parentheses show the overheads against the original.

Project Timing-change Compilation Verilog Simulation Fuzzing
) components time (s) LoC speed (Hz)' speed (/hour)
Boom 334 311.2(93%) 479k (5%) 7.25k (0.01%) 269
NutShell 101 248.2 (370%) 173k (23%) 52.6 k (0.01%) 9230

simulation speed is measured as cycles per second.

components can affect the instruction execution time, and they can
potentially be used as a timing side-channel.

Discovered Timing-change Components. SpEcDocToR found
334, and 101 timing-change components in RISC-V Boom and Nut-
Shell, where some of commonly found components are shown
in Figure 2. We summarize only a portion of the results due to the
space limit.

In the CPU frontend, SpEcDocToR identified several compo-
nents for predicting the control flow (e.g., BIM, RAS) as timing-
change components. Those components are used to select next
fetched pc, and it affects the instruction execution time. While
SpecDocToR found only one-level branch predictor in RISC-V Nut-
Shell, it identified multi-level branch predictors in Boom such as
FAMicroBTBBranchPredictor, and TageTable, all of which can affect
instruction execution time. In addition to the control flow predic-
tion, SPECDOCTOR identified timing-change components related to
the virtual address translation and fetching instructions.

In the CPU backend, SPEcDocToR found timing-change com-
ponents in register files, control status registers, instruction issue
queue, arithmetic unit, etc. The register files are detected as they
affect the arithmetic computation, branch resolution, or else. As
in the CPU frontend, SPECDOCTOR detected components related to
the virtual address translation, and fetching data. Similar to the
branch predictor case, RISC-V Boom was found to have additional
level of virtual memory translation cache, called PTW, which also
affects memory stage completion time.

Note that the found results contain false-positives as not all the
components connected to the valid signals construct a timing side-
channel. SPECDOCTOR finds true timing side-channels through the
dynamic differential testing in the following phases.

Instrumentation Overhead. We summarize the statistics of the
static analysis and instrumentation in Figure 3. SPEcDocToR found
334, and 101 timing-change components in RISC-V Boom and Nut-
Shell, and the RTL compilation time including SPECDoCTOR static
analysis were about 311.2 s and 248.2 s. The resulting Verilog files
after SPECDOCTOR instrumentation have 479 k and 173 k LoC for
each, which contains 15 % instrumentation overhead on overage.
However, the instrumented logic has almost no effect on the RTL
simulation speed, as the instrumented logic remains inactive for
most of the time, and it works only when monitoring the states
of the timing-change components. In terms of the fuzzing speed,
RISC-V Boom was slower than NutShell due to the larger simulation
complexity and testbench initialization time.

6.4 Multi-phased Fuzzing

SpEcDocTOR designs a multi-phased fuzzer which finds transient-
trigger instructions in phase 2, secret-transmit instructions in phase 3,
and secret-receive instructions in phase 4. Thus, we evaluate whether

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA.

Table 4: Comparison study of finding transient execution vulnera-
bilities. All the attacks have accessed secret through a load instruc-
tion.

Transient execution attack Elapsed CPU time (h)
context transient execution channel® | vanillal | vanilla2 ‘ SpDoci
attacker arch(store-page-fault) DCache Fail Fail 46.1

arch(load-page-fault) DCache Fail Fail 34.7

micro(branch-misprediction) DCache Fail Fail 26.9

victim micro(branch-misprediction) DCache Fail 151.6 30.6
micro(branch-misprediction) ICache Fail Fail 31.2
micro(branch-misprediction) NBDTLB Fail Fail 40.6

* Context of transient execution, { Timing side-channel, SpecDoctor

Table 5: Variants of transient execution vulnerabilities found by
SPECDOCTOR.

Project ‘ Configuration” ‘Transient execution” Timing side-channel*

bim, faubtb, tlb, ptw, dcache
faubtb, ras, i/dcache
faubtb, ras, i/dcache
faubtb, ptw, dcache

faubtb, ras, tlb, ptw, i/dcache

K=E (attacker) | pmp/vm-fault

K=E (victim) control-flow
mem-bypass

U=K (attacker) | vm-fault

Boom
U=K (victim) control-flow

mem-bypass faubtb, ras, tlb, ptw, i/dcache
U=E (victim) control-flow faubtb, ras, i/dcache
mem-bypass faubtb, ras, i/dcache

NutShell ‘ U=K (victim)
*<attacker>=<victim> (Context of transient execution), E: enclave, K: kernel, U: user
‘tcontrol-flow: control-flow misprediction, mem-bypass: load-store bypass violation
ffaubtb: 1st level btb, ras: return address stack, ptw: 2nd level tlb in RISC-V Boom

ipht: pattern history table, rs: reservation station in RISC-V NutShell

‘ control-flow pht, ras, tlb, rs, i/dcache

the multi-phased design helps quickly finding various transient ex-
ecution vulnerabilities.

We implemented two vanilla versions of SPECDOCTOR: 1) vanillal
totally randomly generates the entire instructions without any
phase, and 2) vanilla2 randomly generates secret-transmit and
secret-receive instructions on top of the testcases from phase 2, but
it does not detect secret transmissions (i.e., phase 3). Thus, all the
vanillal and vanilla2 find transient execution vulnerabilities by
comparing CPU cycles as explained in phase 4, while never, or par-
tially solving the vulnerability constraints. Then, we summarized
the elapsed CPU time to find the entire vulnerabilities with three
different fuzzers (i.e., vanillal, vanilla2, and SPECDOCTOR).

We ran the fuzzers on RISC-V Boom, and summarizes the com-
parison results as shown in Figure 4. Overall, the results show that
the phased fuzzer design clearly helps finding transient execution
vulnerabilities. SPEcDocToR has found six Meltdown and Spectre-
type vulnerabilities within almost 50 CPU hours. On the other
hand, vanillal without any phases did not find any vulnerabilities.
vanilla2 found only one attack (i.e., basic Spectre attack) after 151
CPU hours, which was already found by SPEcDocToR in 31 hours.

6.5 Found Transient Execution Vulnerabilities

In this section, we evaluate the unified transient execution vulnera-
bilities found by SPEcDocTOR. SPECDOCTOR has found several tran-
sient execution vulnerabilities in both RISC-V Boom, and NutShell,
including two new vulnerabilities which are explained in §7. In
RISC-V Boom, SpEcDocTOR found the PoCs for Spectre [14], Spec-
tre variant 4 [14], ret2Spec [13], Meltdown [2], and Foreshadow [3].
On the other hand, in RISC-V NutShell, SpEcDocTor found Spec-
tre, and ret2Spec. Meltdown-type vulnerabilities were not found in

Jaewon Hur, Suhwan Song, Sunwoo Kim, & Byoungyoung Lee

trigger:
/* Load from invalid page
for triggering page fault */
la x18, addr_page_fault

1
2
3
4
T Dataflow 5 1w x19, 0(x18)
6
7
8

«wes Signal

transient:
/* Transiently load secret */
la x20, secret

Update when
Id retire

o
e

index counter

BranchPredictors

9 1d x21, 0(x20)
> e 10 /* Dummy instructions
11 to simultaneously raise
12 page fault resolution signal and
< 13 branch resolution signal. */
2 14 andi x21, x21, Oxl
=i 15 andi x21, x21, 0x1
FetchTargetQueue J}i 16 /* Secret dependent branch
e et g 17 to transmit secret value */
18 beqz x21, LO

: ER y 19 nop
0x1000 1 Lo:
Incorrect update 20 V:
pyotoos [oranen [0 1511
o - : (2)correct update,

later flushed on page fault
é Core $ "
. . . b 10, L1
(a) Mechanism of triggering ng;Z *
Boombard bug. 27 L1
(b) Code snippet of Boombard.

22 receive:
23

taken, exception,
redirected pc

/* Receiving secret */

Figure 8: Boombard transient execution vulnerability on RISC-V
Boom.

NutShell, as the memory stage of NutShell does not speculatively
return data before checking the privilege.

Furthermore, SPEcDocTOR newly found several attack variants
which combine different attack vectors in different attack configu-
rations. While we did not report these vulnerabilities as each attack
vector is not new, we want to note that the analysis results would
be helpful for the CPU designers to comprehensively mitigate the
vulnerabilities. We categorized the found attack variants as shown
in Figure 5. Specifically, RISC-V Boom was vulnerable to more var-
ious attacks (e.g., various timing side-channels) as it implements
more complex CPU pipeline for optimizing the performance.

7 FINDINGS OF SPECDOCTOR

SpeEcDocToR found two interesting variants of transient execution
vulnerabilities in RISC-V Boom and NutShell, which exploit pre-
viously unknown attack vectors. We explain the details of the
attacks in the following.

7.1 Boombard on RISC-V Boom

Boombard is a variant of Meltdown-type attack found in RISC-
V Boom. Different from previously known transient execution
vulnerabilities, Boombard first showcases that an implementation
bug, which disagrees with the specification, can lead to a tran-
sient execution vulnerability. To be specific, BIMBranchPredictor
in Boom should not have the timing side-channel according to
its specification—i.e., the specification states that it should not be
updated by transient instructions [15] and thus it should not leak
the secret through a transient execution. However, SPECDOCTOR
was able to find a transient instruction pattern which unexpect-
edly updates the BIMBranchPredictor (i.e., the Boombard bug), and
transiently leaks the secret. We reported this vulnerability to the
developers and it was assigned with a CVE number, showing the
critical impact.

Boombard implicates that in order to detect transient execution
vulnerabilities, one should not entirely rely on a CPU specification

SPECDOCTOR

to model its behavior [16, 17]. Instead, one should always analyze
its implementation as well, because the implementation may render
its specification in a different way as found by Boombard.

Details of Boombard Bug. Boom has an internal BIMBranchPredictor

update logic as shown in Figure 8-(a). According to its specification,
BIMBranchPredictor only updates its state with the retired branch
instruction, and thus transient branch instructions cannot impact
BIMBranchPredictor [15]. Such an update logic is implemented
with the help of FetchTargetQueue, which maintains the informa-
tion of the fetched instructions: i) pc and inst, which records the
instruction itself; and ii) taken, which records if a branch instruction
is resolved to be taken or not. Then, FetchTargetQueue updates the
information depending on two signals from the Core: i) a branch
resolution signal, which notifies that a certain branch instruction
is resolved to be taken or not; and ii) a page fault signal, which
notifies that a certain instruction raised a page fault.

For example, when a branch instruction is fetched and then the
branch resolution signal is sent from the Core (@ in Figure 8-(a)), the
taken column in the FetchTargetQueue is first updated (@). Then,
when the corresponding branch instruction successfully retires
without any preceding page fault, BIMBranchPredictor is finally
updated with the taken value.

However, when the page faulting instruction (e.g., load to invalid
address) comes before the branch instruction, Boom does not update
BIMBranchPredictor since the branch instruction will not retire.
In this case, the Core sends two signals to the FetchTargetQueue
individually (@), i.e., the page fault signal and the branch resolution
signal. Thus, the order of the signals can be changed depending on
the instructions as follow: 1) branch first, then page fault, 2) page
fault first, then branch, and 3) branch and page fault at the same
cycle. In the first case, the corresponding FetchTargetQueue entry
of the branch instruction is updated as before (). However, the
entry is not written back to the BIMBranchPredictor and is flushed
due to the page fault signal later. In the second case, the branch
resolution signal is ignored since the corresponding entry would
have been already flushed.

The problem arises in the third case. When the branch resolution
signal and the page fault signal arrive at the same cycle (D), Boom
incorrectly updates the taken value of the page faulting instruc-
tion (@), not the branch instruction. Thus, the updated taken value
was finally written back to the BIMBranchPredictor () even if the
branch instruction is flushed. SPEcDocTOR was able to find this
subtle bug since it fuzzes transient instructions while monitoring
the BIMBranchPredictor in phase 3. While this bug is not a security
bug as it only degrades the prediction performance, SPEcDocTOR
found that the bug can eventually lead to a transient execution
attack.

Details of Boombard. Using the Boombard bug found by SPEcDoCTOR,

we manually constructed the exploit (i.e., Boombard). As initially
configured by SPECDOCTOR phase 1, the threat model of the attack
is a malicious kernel with a supervisor mode attacking a victim
enclave with a machine mode [42]. Also, the Boombard attack is a
Meltdown-type attack such that the attacker reads the secret beyond
the isolation boundary enforced by the hardware (i.e., PMP [32]).
As shown in the code snippet in Figure 8-(b), we places fol-
lowing instructions in order: a page faulting load 1w (i.e., line 5),

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA.

1 attacker:

2 rdcycle x10

3 call victim

4 rdcycle x11

5 /* Retrieve secret by measuring execution time */
6 sub x11, x11, x10

7

8

9

victim:

10 /% First division instruction */
11 div x18, x16, x17

13 /* Branch instruction depending on the first division */
14 beqz x18, LO

15 /% Branch is mispredicted to be not-taken */
16 transient:

17 /* Secret load */

18 la x19, secret

19 1d x20, 0(x19)

20 /* Second division instruction */

21 div x21, x21, x20

22 LO:

23 ..

24 ret

Figure 9: Code snippet of Birgus.

secret load 1d (i.e., line 9), dummy instructions andi (i.e., line 14-15),
and secret dependent branch begz (i.e., line 18). Then, we placed
another branch bnez (i.e., line 25) at the address conflicting with
the page faulting load 1w (i.e., address using the same index in
BIMBranchPredictor). Thus, the page faulting load 1w is used to
trigger a transient execution and transmit a secret value through
the Boombard bug, and the conflicting branch bnez is used to re-
ceive the secret value. The dummy instructions in line 14-15 are
used to raise the page fault and the branch resolution signals at the
same cycle, so as to trigger the Boombard bug.

The exploit works in following steps: 1) resetting BIMBranchPredictor

and other CPU states, 2) performing transient execution and trans-
mitting the secret, and 3) receiving the secret. First, we reset the
BIMBranchPredictor entry of conflicting branch bnez to always
taken. Then, we reset other CPU states such as DCache or TLB so
that the page fault and the branch resolution signals are determin-
istically asserted later.

After resetting the CPU, we trigger the transient execution with
the page faulting load 1w instruction. Then, the sophisticated tran-
sient instructions (i.e., secret load 1d, dummy andi, and branch
beqz) are transiently executed so that the Boombard bug is triggered.

Therefore, the Boombard bug incorrectly updates the BIMBranchPredictor

entry of the page faulting load 1w, which is also conflicting with
the branch bnez—Without the bug, BIMBranchPredictor should not
be updated. The BIMBranchPredictor entry would be updated to
either taken, or not-taken depending on the secret (i.e., the value of
the register x21 of line 18). Thus, we finally receive the secret value
by measuring the branch prediction result of the conflicting branch
bnez instruction. The exploit successfully retrieved the secret data
with an error rate under 5% and 19Kb/s of leakage rates assuming
a CPU with 2GHz of the clock rate.

7.2 Birgus on RISC-V NutShell

Birgus is a Spectre-type variant found in RISC-V NutShell. The
interesting aspect of Birgus is that it exploits a previously unknown
gadget to construct a port contention side channel. The gadgets
which construct a port contention side channel have been widely
studied [10, 18]. However, Birgus was able to find an instruction
pattern in RISC-V NutShell, which is different from the previously

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA.

studied gadgets. This implies that the CPU verification relying on
certain known patterns can be incomplete and we need a continuous
verification to stop the transient execution vulnerabilities.

Details of Birgus. We provide the Birgus exploit as shown in Fig-
ure 9. The key insight of the attack is that the instruction under a
mispredicted branch (i.e., line 21) can contend with the instruction
that has already come before the branch (i.e., line 11). On top of
that, the attacker can retrieve the secret value by observing the
induced side effect of the contention (i.e., an execution time of the
victim function). Especially, Birgus exploits two implementation
features of RISC-V NutShell: 1) port contention on division unit,
and 2) variable latency of the division depending on the input value.
As a result, the attacker is able to retrieve the secret by measuring
the variable CPU cycles induced by the contention and different
division latency on the secret values (i.e., line 2-6).

The vulnerable instructions (i.e., line 11-22 of the victim) contain
two main parts: i) the first division instruction div (i.e., line 11) and
the branch instruction beqz which depends on the div (i.e., line 14),
and after the beqz, ii) the secret load instruction 1d (i.e., line 19) and
the second division instruction div which uses the loaded secret
(i.e., line 21). Here, the branch beqz is mispredicted and the second
part is transiently executed.

Since NutShell has only one division unit, the single division unit
handles both the first div instruction and the second div instruction.
This leads to the port contention on the division unit. In most cases,
the first div instruction is handled earlier than the second div, but
the second div can also be handled earlier if its dependency is
resolved earlier than the first one. In this case, the computation of
the first div is delayed until the second div is completed, even if
the second div is a transient instruction. Meanwhile, the delayed
cycle is affected by the secret value, as the second div computes on
the secret (i.e., x20). For example, if the secret value is 0, the second
div is completed in 1 cycle, otherwise it takes at most 64 cycles.

The problem is that the branch beqz depends on the result of
the first div (i.e., line 11-14). Thus, the resolution of beqz is also
delayed until the completion of the second, and then the first div.
This makes the resolution time of the beqz depends on the secret
value. Finally, the entire execution time of the function victim is
affected, which enables the attacker to retrieve the secret value by
observing the cycle differences. The exploit successfully retrieved
the secret with the error rate under 1% and 216Kb/s of leakage rate.

8 DISCUSSIONS

Generalizing to Other Transient Execution Attacks. While
we think the template based approach of SPECDOCTOR is general
enough to capture all the transient execution vulnerabilities, the
implementation should cover various CPU configurations and fea-
tures. In the case of SPECDOCTOR’s implementation, the current
SpEcDocTOR cannot cover following types: 1) transient execution
due to a memory-ordering violation [5], 2) MDS [4, 6, 29], and
3) self-modifying code [5].

The template needs to be extended to cover these types. The
first two types (i.e., memory-ordering violation and MDS) can be
covered by handling multi-threaded execution. MDS types would
need a special catering, because the secret data should be transiently
accessed through a temporary shared buffer by the attacker’s thread.

Jaewon Hur, Suhwan Song, Sunwoo Kim, & Byoungyoung Lee

Thus, SPECDOCTOR needs an individual thread, victim and attacker
threads, each of which continuously fills and probes these shared
buffers, respectively. To cover the self-modifying code, the template
and instruction generation of SPECDOCTOR need to be extended to
include a specific memory region which can be repeatedly updated
and executed.

In order to generalize the template, SPECDOCTOR needs to em-
ploy both the random instruction generation and the knowledge on
previous attack patterns. As the transient execution vulnerabilities
need complex configurations of the CPU, a pure random instruction
generation may not easily construct such configurations. On the
other hand, naive implementation which solely relies on the previ-
ous attack patterns cannot explore all the possible attack surfaces.
Thus, the random instruction generation and the knowledge on the
previous attack patterns should be properly balanced together to
construct valid CPU configurations while further testing previously
unknown configurations.

Positioning of SPECDOCTOR against Static Approaches. SPECDOCTOR

employs a hybrid approach by statically analyzing the code for the
timing side channels and dynamically fuzzing the instructions to
find concrete PoCs. Static and dynamic approaches in SPECDocTOr
complement each other in two aspects: 1) reducing the search space,
and 2) avoiding the false-positives.

a static approach of SPEcDocTOR reduces the search space of the
fuzzer by identifying and instrumenting only the timing-change
components. As the CPU contains enormous number of compo-
nents (e.g., RISC-V Boom has 36,000 registers), it helps SPECDOCTOR
minimize the searching effort and quickly find the instructions con-
structing a timing side channel.

On the other hand, a dynamic approach avoids the false posi-
tives as it finds concrete instructions through fuzzing. As the static
analysis may produce false-positive cases (i.e., incorrectly iden-
tified timing-change components), SPEcDocTOR filters out such
cases through the fuzzing, and faithfully confirms the identified
vulnerabilities.

Comparing SPEcDocTOR against Regression Testing. We think
SpEcDocTOR has two benefits over regression testing while devel-
oping a mitigation: 1) testing the soundness of the mitigation, and
2) assisting a root-cause analysis. First, SPECDOCTOR can provide
better soundness than the regression testing. As the transient ex-
ecution vulnerabilities are triggered by various components in
the CPU, a mitigation attempt may not take account a certain
component and thus it is still vulnerable to a variant. In this case,
SpEcDocTOR has potentials to detect such a bypass case—as shown
in §7, SPECDOCTOR is able to find similar variants if the original
attack is provided. However, regression testing only checks the pre-
viously known patterns, and would not be able to find the variants.
Furthermore, SPECDOCTOR can assist developers to triage the
root-cause of vulnerabilities. Understanding the root-cause of vul-
nerabilities requires non-trivial manual efforts as they originate
from various parts of the CPU. SPECDOCTOR can help this process
by providing information on the internal details of the CPU (e.g., en-
gaged timing-changed components). For example, as shown in §6.5,
SpeEcDocToR helps quickly identifying the root-causes of the found

SPECDOCTOR CCS ’22, November 7-11, 2022, Los Angeles, CA, USA.
Table 6: Comparison of SPECDOCTOR versus related works.
RTL Attack Available Can detect new’ Disadvantages compared
verification type* privileges tran-trig sec-tx sec-rx to SPEcCDOCTOR
UPEC [16] O M/S All A A o Requires manually specified processor model
IntroSpectre [31] O M All X A X High false-positive, not considering secret leakage
Revizor [43] X M/S Partial (no-enclave) A A X Only D-cache side-channel, no in-depth analysis
Osiris [23] X - - X X O Finds only side-channels
Transynther [8] X M Partial (no-enclave) X O X Only Meltdown-type, D-cache side-channel
SpeechMiner [9] X M/S Partial (no-enclave) X X X Cannot find new attacks
Absynthe [18] X - - X X A Find only port contention side-channels
SpecDoctor @) M/S All O O O -

"M: Meltdown-type (including MDS), S: Spectre-type
ftran-trig: transient-trigger, sec-tx: secret-transmit, sec-rx: secret-receive

vulnerabilities. On the contrary, regression testing does not pro-
vide such information as it only performs end-to-end testing of the
known patterns.

9 RELATED WORK

Transient Execution Attacks. Spectre [1] and Meltdown [2]
were the first transient execution attacks. Since then, researchers
have discovered numerous mechanisms leading to transient execu-
tion attacks. In the Spectre domain, several attacks exploited the
return address stack to launch the transient executions [13, 44].
Jann found a Spectre variant using a speculative store bypass for a
data flow misprediction [14]. Ragab et al. [5] discovered a specula-
tion in FPU and memory ordering as a new source of the data flow
misprediction. SmotherSpectre [10] introduced a new side-channel,
i.e., port contention for leaking secret through the Spectre attack.
On the other hand, in the Meltdown domain, Julian exploited lazy
floating point register handling in Intel CPUs [19]. ForeShadow [3]
showed that the attack is even possible against the Intel SGX en-
claves. RIDL [4] and ZombieLoad [29] opened MDS attacks by
discovering that the shared buffers in CPU (e.g., a line fill buffer)
can leak security sensitive data. Fallout [45] exploits the vulnerabil-
ities in the store buffer. Van et al. [6] leaked the secret data while
writing back the cache lines. CrossTalk [46] proved that the MDS
attack is also available on the shared buffer outside the CPU.

Fuzz Testing. Since the introduction of AFL [11], Fuzzing has
been widely used in the software community. Many existing fuzzers
target user programs [30, 47-50]. Nowadays, fuzzer frameworks
have been developed to verify kernel [12, 51], hypervisor [24], and
even the CPU RTLs [25]. On top of the fuzzers, Petsios et al. [52]
introduced the first differential fuzz testing, which finds semantic
bugs in software programs. Especially, Nilizadeh [53] introduced
DifFuzz which finds side-channels through differential fuzz testing,
but it was not applied to CPU’s micro-architectural side-channels.

Automated Approach to Find Transient Execution Attacks.
Many previous works have tried to automatically find transient
execution vulnerabilities in the CPU. We summarize the related
works in Figure 6 as well as comparing those with SPECDOCTOR.
UPEC [16] and IntroSpectre [31] are RTL-based techniques to find
transient execution vulnerabilities. UPEC [16] performs a static
analysis with a bounded model checking. However, UPEC requires
non-trivial manual efforts as it is based on a manually specified
processor model for each RTL implementation. On the contrary,

SpECDOCTOR can work on any RTL implementation as long as the
baseline implementation language (e.g., Chisel) is the same. Intro-
Spectre [31] performs a dynamic analysis to find potential MDS
type vulnerabilities in a CPU RTL. Specifically, IntroSpectre finds
shared buffers in the CPU which temporarily store the security sen-
sitive data. However, IntroSpectre suffers from high false-positives
as it does not find the way to transiently leak a secret from the
found buffers, which is a key requirement of the transient execution
attacks. SPECDOCTOR does not suffer from such false-positives as it
finds unified transient execution vulnerabilities.

All the rest do not target RTL implementations. Revizor [43]
applied a model-based relational testing to find transient execu-
tion vulnerabilities in blackbox CPUs. While Revizor provides
concrete backgrounds for detecting the vulnerabilities, it cannot
find new side-channels due to the blackbox nature of the targets.
SpEcDocTOR can find comprehensive transient execution vulnera-
bilities including new side-channels thanks to the in-depth analysis
on the RTL. Osiris [23] finds 1-bit micro-architectural side-channels
but it does not discuss how to trigger a transient execution or ex-
filtrate the secret, which are all the key requirements of transient
execution attacks. Transynther [8] introduced a framework to find
new Meltdown type vulnerabilities by mutating the instructions in
known attacks such as Meltdown, and RIDL.

10 CONCLUSION

This paper proposes SPECDOCTOR, an automated RTL fuzzer to find
transient execution vulnerabilities. SPECDOCTOR introduces a con-
figurable template and multi-phased fuzzer design to efficiently find
various transient execution vulnerabilities. SPECDOCTOR proves
its practical impact by finding transient execution vulnerabilities on
two RISC-V CPUs (i.e., Boom and NutShell). Moreover, SPECDOCTOR
found Boombard, which exploits a new implementation bug in RISC-
V Boom, and Birgus, which introduces a previously unknown gadget
to construct port contention side channel in NutShell. Especially,
Boombard was assigned with a CVE number, demonstrating the
strong implication of SPECDOCTOR on the security community.

11 ACKNOWLEDGEMENT

We would like to thank anonymous reviewers for their insightful
comments. This work was partially supported by Supreme Prose-
cutor’s Office of the Republic of Korea grant funded by Ministry
of Science and ICT (No0.1275000160), Institute for Information &
communications Technology Promotion (IITP) grant funded by the

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA.

Korea government (MSIP) (No.2020-0-01840, Analysis on technique
of accessing and acquiring user data in smartphone), and National
Research Foundation (NRF) of Korea grant funded by the Korean
government MSIT (NRF-2019R1C1C1006095). This work was also
supported by SAMSUNG Research, Samsung Electronics Co., Ltd,
under the title "Utilizing fuzz testing to verify chipset and firmware
security”. The Institute of Engineering Research (IOER) and Au-
tomation and Systems Research Institute (ASRI) at Seoul National
University provided research facilities for this work.

Jaewon Hur, Suhwan Song, Sunwoo Kim, & Byoungyoung Lee

SPECDOCTOR

REFERENCES

(1]

[2

=

(3

=

N
flust

[19]

[20]

[21

[22]

[23]

[24

Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner
Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, et al. Spec-
tre attacks: Exploiting speculative execution. In Proceedings of the 40th IEEE
Symposium on Security and Privacy (Oakland), San Francisco, CA, May 2019.
Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, et al.
Meltdown: Reading kernel memory from user space. In Proceedings of the 27th
USENIX Security Symposium (Security), Baltimore, MD, August 2018.

Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank
Piessens, Mark Silberstein, Thomas F Wenisch, Yuval Yarom, and Raoul Strackx.
Foreshadow: Extracting the keys to the intel {SGX} kingdom with transient
out-of-order execution. In Proceedings of the 27th USENIX Security Symposium
(Security), Baltimore, MD, August 2018.

Stephan Van Schaik, Alyssa Milburn, Sebastian Osterlund, Pietro Frigo, Giorgi
Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. Ridl: Rogue
in-flight data load. In Proceedings of the 40th IEEE Symposium on Security and
Privacy (Oakland), San Francisco, CA, May 2019.

Hany Ragab, Enrico Barberis, Herbert Bos, and Cristiano Giuffrida. Rage against
the machine clear: A systematic analysis of machine clears and their implica-
tions for transient execution attacks. In Proceedings of the 30th USENIX Security
Symposium (Security), Online, August 2021.

Stephan van Schaik, Marina Minkin, Andrew Kwong, Daniel Genkin, and Yuval
Yarom. Cacheout: Leaking data on intel cpus via cache evictions. In Proceedings
of the 42st IEEE Symposium on Security and Privacy (Oakland), Online, May 2020.
Antonio Gonzalez, Fernando Latorre, and Grigorios Magklis. Processor mi-
croarchitecture: An implementation perspective. Synthesis Lectures on Computer
Architecture, 5(1):1-116, 2010.

Daniel Moghimi, Moritz Lipp, Berk Sunar, and Michael Schwarz. Medusa: Mi-
croarchitectural data leakage via automated attack synthesis. In Proceedings of
the 29th USENIX Security Symposium (Security), Boston, MA, August 2020.
Yuan Xiao, Yingian Zhang, and Radu Teodorescu. Speechminer: A framework
for investigating and measuring speculative execution vulnerabilities. February
2020.

Atri Bhattacharyya, Alexandra Sandulescu, Matthias Neugschwandtner, Alessan-
dro Sorniotti, Babak Falsafi, Mathias Payer, and Anil Kurmus. Smotherspectre:
exploiting speculative execution through port contention. In Proceedings of the
26th ACM Conference on Computer and Communications Security (CCS), London,
UK, November 2019.

M. Zalewski. American fuzzy lop. http://lcamtuf.coredump.cx/afl/.

Dmitry Vyukov. Syzkaller: an unsupervised, coverage-guided kernel fuzzer, 2019.
Giorgi Maisuradze and Christian Rossow. ret2spec: Speculative execution using
return stack buffers. In Proceedings of the 25th ACM Conference on Computer and
Communications Security (CCS), Toronto, ON, Canada, October 2018.

Jann Horn. Google project zero. speculative execution, variant 4: speculative
store bypass. https://bugs.chromium.org/p/project-zero/issues/detail?id=1272.
Risc-v boom’s documentation. https://docs.boom-core.org/en/latest/index.html.
Mohammad Rahmani Fadiheh, Johannes MAijller, Raik Brinkmann, Subhasish
Mitra, Dominik Stoffel, and Wolfgang Kunz. A formal approach for detecting
vulnerabilities to transient execution attacks in out-of-order processors. In 2020
57th ACM/IEEE Design Automation Conference (DAC), pages 1-6, 2020.

Marco Guarnieri, Boris Kopf, Jan Reineke, and Pepe Vila. Hardware-software
contracts for secure speculation. In Proceedings of the 42st IEEE Symposium on
Security and Privacy (Oakland), Online, May 2020.

Ben Gras, Cristiano Giuffrida, Michael Kurth, Herbert Bos, and Kaveh Razavi.
Absynthe: Automatic blackbox side-channel synthesis on commodity microar-
chitectures. In Proceedings of the 2020 Annual Network and Distributed System
Security Symposium (NDSS), San Diego, CA, February 2020.

Julian Stecklina and Thomas Prescher. Lazyfp: Leaking fpu register state using
microarchitectural side-channels. arXiv preprint arXiv:1806.07480, 2018.

Yuval Yarom and Katrina Falkner. Flush+ reload: A high resolution, low noise, 13
cache side-channel attack. In Proceedings of the 23rd USENIX Security Symposium
(Security), San Diego, CA, August 2014.

Dmitry Evtyushkin, Ryan Riley, Nael CSE Abu-Ghazaleh, ECE, and Dmitry Pono-
marev. Branchscope: A new side-channel attack on directional branch predictor.
March 2018.

Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B Lee. Last-level
cache side-channel attacks are practical. In Proceedings of the 36th IEEE Sympo-
sium on Security and Privacy (Oakland), San Jose, CA, May 2015.

Daniel Weber, Ahmad Ibrahim, Hamed Nemati, Michael Schwarz, and Christian
Rossow. Osiris: Automated discovery of microarchitectural side channels. August
2021.

Sergej Schumilo, Cornelius Aschermann, Ali Abbasi, Simon Wérner, and Thorsten
Holz. Hyper-cube: High-dimensional hypervisor fuzzing. In Proceedings of the
2020 Annual Network and Distributed System Security Symposium (NDSS), San
Diego, CA, February 2020.

[25]

[26

[27

™~
&,

[29

[30

S
fla’

[43

(44

[45

[46

[47

(48]

N
)

[50

[51

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA.

Jaewon Hur, Suhwan Song, Dongup Kwon, Eunjin Baek, Jangwoo Kim, and
Byoungyoung Lee. Difuzzrtl: Differential fuzz testing to find cpu bugs. In Pro-
ceedings of the 42st IEEE Symposium on Security and Privacy (Oakland), Online,
May 2020.

Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy
Vyukov. Addresssanitizer: A fast address sanity checker. In Proceedings of the
2012 USENIX Annual Technical Conference (ATC), Boston, MA, June 2012.
Changwoo Min, Sanidhya Kashyap, Byoungyoung Lee, Chengyu Song, and Tae-
soo Kim. Cross-checking semantic correctness: The case of finding file system
bugs. In Proceedings of the 25th ACM Symposium on Operating Systems Principles
(SOSP), Monterey, CA, October 2015.

Yuting Chen, Ting Su, and Zhendong Su. Deep differential testing of jvm im-
plementations. In Proceedings of the 41th International Conference on Software
Engineering (ICSE), Montreal, Canada, May 2019.

Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian Stecklina,
Thomas Prescher, and Daniel Gruss. Zombieload: Cross-privilege-boundary
data sampling. In Proceedings of the 26th ACM Conference on Computer and
Communications Security (CCS), London, UK, November 2019.

Suhwan Song, Chengyu Song, Yeongjin Jang, and Byoungyoung Lee. Crfuzz:
fuzzing multi-purpose programs through input validation. In Proceedings of
the 25th European Software Engineering Conference (ESEC) / 28st ACM SIGSOFT
Symposium on the Foundations of Software Engineering (FSE), Online, November
2020.

Moein Ghaniyoun, Kristin Barber, Yingian Zhang, and Radu Teodorescu. Intro-
spectre: A pre-silicon framework for discovery and analysis of transient execution
vulnerabilities. In Proceedings of the 48st ACM/IEEE International Symposium on
Computer Architecture (ISCA), Online, June 2021.

Risc-v isa manual (privileged). https://riscv.org/specifications/privileged-isa/.
Risc-v isa manual (unprivileged). https://riscv.org/specifications/
unprivileged-isa/.

Boom: Berkeley out-of-order machine.
riscv-boom.

Nutshell, risc-v cpu developed by oscpu team. https://github.com/OSCPU/
NutShell.

Riscyoo: Risc-v out-of-order processors. https://github.com/csail-csg/riscy-O0O.

https://github.com/riscv-boom/

The lizard core. https://github.com/cornell-brg/lizard.

Chisel 3: A modern hardware design language. https://github.com/
freechipsproject/chisel3.

Firrtl:flexible intermediate representation for rtl. https://github.com/

freechipsproject/FIRRTL.

Chipyard, an agile risc-v soc design framework with in-order cores, out-of-order
cores, accelerators, and more. https://github.com/ucb-bar/chipyard.

Jerry Zhao, Ben Korpan, Abraham Gonzalez, and Krste Asanovic. Sonicboom: The
3rd generation berkeley out-of-order machine. In Fourth Workshop on Computer
Architecture Research with RISC-V, 2020.

Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste Asanovi¢, and Dawn Song.
Keystone: An open framework for architecting trusted execution environments.
In Proceedings of the 13th European Conference on Computer Systems (EuroSys),
Crete, Greece, April 2020.

Oleksii Oleksenko, Christof Fetzer, Boris Kopf, and Mark Silberstein. Revizor:
Fuzzing for leaks in black-box cpus. arXiv preprint arXiv:2105.06872, 2021.
Esmaeil Mohammadian Koruyeh, Khaled N Khasawneh, Chengyu Song, and Nael
Abu-Ghazaleh. Spectre returns! speculation attacks using the return stack buffer.
In Proceedings of the 13th USENIX Workshop on Offensive Technologies (WOOT),
Baltimore, MD, August 2019.

Claudio Canella, Daniel Genkin, Lukas Giner, Daniel Gruss, Moritz Lipp, Marina
Minkin, Daniel Moghimi, Frank Piessens, Michael Schwarz, Berk Sunar, et al.
Fallout: Leaking data on meltdown-resistant cpus. In Proceedings of the 26th
ACM Conference on Computer and Communications Security (CCS), London, UK,
November 2019.

Hany Ragab, Alyssa Milburn, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida.
Crosstalk: Speculative data leaks across cores are real. In Proceedings of the 42st
IEEE Symposium on Security and Privacy (Oakland), Online, May 2020.

Marcel B6hme, Van-Thuan Pham, and Abhik Roychoudhury. Coverage-based
greybox fuzzing as markov chain. In Proceedings of the 23rd ACM Conference on
Computer and Communications Security (CCS), Vienna, Austria, October 2016.
Peng Chen and Hao Chen. Angora: Efficient fuzzing by principled search. In
Proceedings of the 39th IEEE Symposium on Security and Privacy (Oakland), San
Francisco, CA, May 2018.

Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and Taesoo Kim. {QSYM}: A
practical concolic execution engine tailored for hybrid fuzzing. In Proceedings of
the 27th USENIX Security Symposium (Security), Baltimore, MD, August 2018.
Caroline Lemieux and Koushik Sen. Fairfuzz: A targeted mutation strategy for
increasing greybox fuzz testing coverage. In Proceedings of the 33rd IEEE/ACM
International Conference on Automated Software Engineering (ASE), Montpellier,
France, September 2018.

Dae R Jeong, Kyungtae Kim, Basavesh Shivakumar, Byoungyoung Lee, and Insik
Shin. Razzer: Finding kernel race bugs through fuzzing. In Proceedings of the

http://lcamtuf.coredump.cx/afl/
https://bugs.chromium.org/p/project-zero/issues/detail?id=1272
https://docs.boom-core.org/en/latest/index.html
https://riscv.org/specifications/privileged-isa/
https://riscv.org/specifications/unprivileged-isa/
https://riscv.org/specifications/unprivileged-isa/
https://github.com/riscv-boom/riscv-boom
https://github.com/riscv-boom/riscv-boom
https://github.com/OSCPU/NutShell
https://github.com/OSCPU/NutShell
https://github.com/csail-csg/riscy-OOO
https://github.com/cornell-brg/lizard
https://github.com/freechipsproject/chisel3
https://github.com/freechipsproject/chisel3
https://github.com/freechipsproject/FIRRTL
https://github.com/freechipsproject/FIRRTL
https://github.com/ucb-bar/chipyard

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA.

40th IEEE Symposium on Security and Privacy (Oakland), San Francisco, CA, May
2019.

[52] Theofilos Petsios, Adrian Tang, Salvatore Stolfo, Angelos D Keromytis, and Suman
Jana. Nezha: Efficient domain-independent differential testing. In Proceedings of
the 38th IEEE Symposium on Security and Privacy (Oakland), San Jose, CA, May

Jaewon Hur, Suhwan Song, Sunwoo Kim, & Byoungyoung Lee

2017.

[53] Shirin Nilizadeh, Yannic Noller, and Corina S Pasareanu. Diffuzz: differential
fuzzing for side-channel analysis. In Proceedings of the 41th International Confer-
ence on Software Engineering (ICSE), Montreal, Canada, May 2019.

	Abstract
	1 Introduction
	2 Background
	2.1 Transient Execution Attacks
	2.2 CPU Microarchitecture
	2.3 Fuzzing

	3 Challenges in SpecDoctor
	4 Design of SpecDoctor
	4.1 Phase 1: Attack Configuration
	4.2 Phase 2: Triggering Transient Executions
	4.3 Phase 3: Accessing and Transmitting Secret
	4.4 Phase 4: Receiving Secret

	5 Implementation
	6 Evaluation
	6.1 Evaluation Setup
	6.2 Triggering Transient Executions
	6.3 Finding Potential Side-Channels
	6.4 Multi-phased Fuzzing
	6.5 Found Transient Execution Vulnerabilities

	7 Findings of SpecDoctor
	7.1 Boombard on RISC-V Boom
	7.2 Birgus on RISC-V NutShell

	8 Discussions
	9 Related work
	10 Conclusion
	11 Acknowledgement
	References

