SpecDoctor: Differential Fuzz Testing to
Find Transient Execution Vulnerabilities

Jaewon Hur, Suhwan Song, Sunwoo Kim*, Byoungyoung Lee

=) = *
By M = Ol & W Samsung Research

Il SEOUL NATIONAL UNIVERSITY

LS

1,_5.4

@ hurjaewon@snu.ac.kr
0 https://compsec.snu.ac.kr/people/jaewonhur/

mailto:hurjaewon@snu.ac.kr
https://compsec.snu.ac.kr/people/jaewonhur/

-

MELTDOWN FORESHADOW

° ~\
7 ﬁ
SOMBIELOAD E\ 1
ATTACK CacheOut
Leaking Data on Intel CPUs via
Cache Evictions

Importance of CPU Verification

CPUs cannot be fixed after they are released

Importance of CPU Verification

® {cpPUF

(inte! -
AMD a - y lf;/erificatio
]| e &{ S

We should find bugs before releasing the chip

SpecDoctor: Differential Fuzz Testing to
Find Transient Execution Vulnerabilities

SpecDoctor Found Real-world Vulnerabilities

10s of bugs in RISC-V Boom and NutShell

b RISC

The Berkeley Out-of-Order Machine (BOOM')
Computer Architecture Besea 2
Industry-Competitive, Synthi/Aadi=tea

RISC-V Pro Global Forum
RIS Nutshell: A Linux-Compatible
\SPIRE e RISC-V Processor Designed

S celio@eecs.be by Underg raduates

Huagiang Wang, University of Chinese
Academy of Sciences

Tuesday, June 30, 15

JECVE-2022-26296 Detail

Current Description

BOOM: The Berkeley Out-of-Order RISC-V Processor commit d77¢2c3 was discovered to allow unauthorized disclosure of information to an

attacker with local user access via a side-channel analysis.

+View Analysis Description

s eve rlty CVSS Version 3.x CVSS Version 2.0

CVSS 3.x Severity and Metrics:

w NIST: NVD Base Score: SIS MEDIUM Vector: CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:N

NVD Analysts use publicly available information to associate vector strings and CVSS scores. We also display any CVSS information provided within the
CVE List from the CNA.

Note: NVD Analysts have published a CVSS score for this CVE based on publicly available information at the time of analysis. The CNA has not provided
a score within the CVE List,

What Does SpecDoctor Do?

Given the CPU RTL (Blueprint of the CPU),

SpecDoctor outputs PoCs

triggering transient execution vulnerabilities

Challenges of SpecDoctor

Transient Execution Vulnerability has countless attack vectors

In order to launch a Transient Execution Attack,

1. trigger a transient execution

M to trizeer a transient execution BPU, BTB, RAS, TLB, Store
ary Ways 1o TIsser a transient © Buffer, Line Fill Buffer, etc.

2. leak secret data in the transient execution

Many ways to leak secret data l/D-Cache, BPU, TLB, FPU,
Ex. Port, Replace logic, etc.

Approaches of SpecDoctor

SpecDoctor catches them ALL AT ONCE

C 4% A 1. Find instructions triggering transient executions
d ﬂ

_ SpecDoctor 2. Find instructions leaking secret data

1. Detecting Transient Executions

Transient Execution

Mispredicted execution inside a CPU,
which should be rollbacked later

1. Detecting Transient Executions

Transient Execution Instruction order

Mispredicted execution inside a CPU,
which should be rollbacked later add

mul

beq

add

st

Out-of-order CPU

e.g.) Branch misprediction

1. Detecting Transient Executions

Transient Execution Instruction order

Mispredicted execution inside a CPU,
which should be rollbacked later add

mul

beq

add

st

Out-of-order CPU

e.g.) Branch misprediction

1. Detecting Transient Executions

Transient Execution Instruction order
Mispredicted execution inside a CPU,
which should be rollbacked later add
mul
beq

Id
Instructions are
. add
speculatively executed
st

Out-of-order CPU

e.g.) Branch misprediction

1. Detecting Transient Executions

Transient Execution Instruction order

Mispredicted execution inside a CPU,
which should be rollbacked later

Instructions are
speculatively executed
st

add

mul

beq .

add

Out-of-order CPU

e.g.) Branch misprediction

10

1. Detecting Transient Executions

Transient Execution Instruction order
Mispredicted execution inside a ' of th
which should be rollbacked laf Resuitofthe add
beq’ is predicted
. mul
beq .

Id
Instructions are "
. d
speculatively executed
st

Out-of-order CPU

e.g.) Branch misprediction

1. Detecting Transient Executions

Transient Execution Instruction order
Mispredicted execution inside a ' of th
which should be rollbacked laf| hesu't of the add
beq’ is predicted
. mul
beq

Id
Instructions are
. add
speculatively executed
st .

Out-of-order CPU

e.g.) Branch misprediction

1. Detecting Transient Executions

Transient Execution Instruction order

Mispredicted execution inside
which should be rollbacked lat Misprediction!

add

mul

beq

Id

add

st <=

Out-of-order CPU

e.g.) Branch misprediction

10

1. Detecting Transient Executions

Transient Execution Instruction order

Mispredicted execution inside a CPU,
which should be rollbacked later add

‘ Id ‘ mul

beq 4=

Id

add

st Rollback

Out-of-order CPU

e.g.) Branch misprediction

1. Detecting Transient Executions

Transient Execution Instruction order
Mispredicted execution inside a CPU,
which should be rollbacked later add
‘ Id ‘ mul
beq 4=
Id
add

_ Rollback

Transient Instructions
Out-of-order CPU

e.g.) Branch misprediction 10

1. Detecting Transient Executions

Transient Execution Instruction order

Mispredicted execution inside a CPU,
which should be rollbacked later add

. |
Observation mu
beq

All transient execution should be rollbacked
(e.g., branch prediction, load-store bypass, TLB check, MDS) al

Reorder Buffer (ROB) is a single handling point
of all rollbacks & | Foliback

Transient Instructions
Out-of-order CPU

e.g.) Branch misprediction 20

1. Detecting Transient Executions

Monitoring RoB to Detect Transient Execution

Step 1. Finding Instructions Triggering Transient Execution

CPU Input <
-
()
add s0, 123
add

bez s0, target
mul a0, s0, al

Save instructions

beg triggering a
" Generate " iont fi
random instructions ransient execution

add [\
st '1 1 — 't.z'ddrl
1 ROB > ﬁ%n

transient execution
SpecDoctor i
\ P) IS detected

Out-of-order CPU

2. Detecting Secret Leakage

Micro-architectural Side Channel
Traces of transient execution in the
CPU containing secret data

2. Detecting Secret Leakage

Micro-architectural Side Channel
Traces of transient execution in the

CPU containing secret data / \
Instruction
order
BPU
Cache
:Egtiiitiiigé: .
4 255|| CPU ',55- register /

Internals of CPU

2. Detecting Secret Leakage

u-arch states change while the
CPU executes instructions

Micro-architectural Side Channel
Traces of transient execution in the

CPU containing secret data /
Instruction
order
BPU
Cache
:Egtiiitiiigé: .
4 255|| CPU ',55- register /

Internals of CPU

2. Detecting Secret Leakage

u-arch states change while the
CPU executes instructions

Micro-architectural Side Channel
Traces of transient execution in the

CPU containing secret data 4
Instruction
order I
BPU
I
- .
d [] register /

Internals of CPU

23

2. Detecting Secret Leakage

u-arch states change while the
CPU executes instructions

Micro-architectural Side Channel
Traces of transient execution in the
CPU containing secret data

Instruction

order I

BPU

register /

Internals of CPU

23

2. Detecting Secret Leakage

Micro-architectural Side Channel

Traces of transient execution in the

CPU containing secret data

Instruction

order

Rollback

-

~

[

BPU

register /

Internals of CPU

23

2. Detecting Secret Leakage

Micro-architectural Side Channel

Traces of transient execution in the

CPU containing secret data

Instruction

order

-

The changed u-arch states

remain after rollback

BPU

register /

Internals of CPU

23

2. Detecting Secret Leakage

Micro-architectural Side Channel
Traces of transient execution in the

CPU containing secret data / \
Instruction
. = liback _
If the transient instructions o BPU
touched secret
Cache

e

Transient Jil—< :
instructions

Internals of CPU

23

2. Detecting Secret Leakage

1. u-arch states hold secret
Micro-architectural Side Channel

Traces of transient execution in the
CPU containing secret data N \
Instruction

N liback ‘

[If the transient instructions

touched secret

llllll

Transient ¥l _£:
instructions

Internals of CPU

23

2. Detecting Secret Leakage

1. u-arch states hold secret

Micro-architectural Side Channel 2. Attackers can steal secret
Traces of transient execution in the by inspecting u-arch states)
CPU containing secret data

Instruction

)) . liback
If the transient instructions
touched secret

sede‘

cne

llllll

Transient ¥l _£:
instructions

Internals of CPU

23

2. Detecting Secret Leakage

Micro-architectural Side Channel
Traces of transient execution in the

CPU containing secret data 4)
Instruction X
\
All secret are transferred through ceSg O
changed u-arch states]
(e.g., cache, BPU, TLB, FPU side channels) % ter /
VY Transient Jil—£:

u-arch states should be different instructions

Internals of CPU

depending on the secret

33

2. Detecting Secret Leakage

[Differential Testing on u-arch states to find secret Ieakages]

34

Step 2. Finding Instructions Leaking Secret Data

4 _ u-arch state
Monitor 5
» u-arch reg0 ([I
regl XX
Randomly replace @1 | .
transient instructions A,

s 2
bez s0, target {:
/% . mul aO{ s0, al WhO’S
_ SpecDoctor J| L__— & different?

Monitor
u-arch

mul r0
add r1

secret

»_.

Instructions from Compile with

step 1 different secret Run on the CPU

Differential Testing

Overall Framework of SpecDoctor

RTL Fuzzing Framework to Find Transient Execution Vulnerabilities

Practical Impact of SpecDoctor

Project Transient execution Side channel
pmp/vm-fault d-cache, bim, tlb,...
bound check bypass i/d-cache, ras, faubtb,...

Boom

branch target corrupt

load-store bypass

i/d-cache, btb, tlb,...
i/d-cache, bim, btb, ...

NutShell

bound check bypass

branch target corrupt

i/d-cache, bim, tlb, ...

i/d-cache, ras, rs, ...

AKCVE-2022-26296 Detail

Current Description

BOOM: The Berkeley Out-of-Order RISC-V Processor commit d77c2c3 was discovered to allow unauthorized disc
attacker with local user access via a side-channel analysis.

+View Analysis Description

Seve rity CVSS Version 3.x

CVSS 3.x Severity and Metrics:

w NIST: NVD Base Score: |55 MEDIUM Vector: CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:N

NVD Analysts use publicly available information to associate vector strings and CVSS scores, We also display any CVSS information provided within the
CVE List from the CNA.,

Note: NVD Analysts have published a CVSS score for this CVE based on publicly available information at the time of analysis. The CNA has not provided
score within the CVE List.

First transient execution attack,
exploiting the implementation bug in the CPU

Conclusion

e SpecDoctor is an RTL fuzzing framework to find transient execution
vulnerabilities in CPU.

* https://github.com/compsec-snu/specdoctor.git

https://github.com/compsec-snu/specdoctor.git

Thank you

