
GRAMINER: Fuzz Testing Gramine LibOS to Harden the
Trusted Computing Base

Jaewon Hur
Seoul National University
hurjaewon@snu.ac.kr

Byoungyoung Lee
Seoul National University

byoungyoung@snu.ac.kr

1 Introduction
Intel SGX [1] enables a variety of valuable use cases (e.g.,
secure data sharing [13]) by protecting an application from
all other untrusted parties (e.g., host kernel). However, incor-
porating Intel SGX in the conventional software development
introduces additional requirements. New interface between
the application running in an SGX enclave and the host kernel
(i.e., ecall and ocall [1]) is one of the requirements.

In this respect, legacy applications should be intrusively
modified to run in the enclave as they were not implemented
with Intel SGX in mind. Thus, many researches have been
proposed to run the applications in the enclave without any
modification [6, 10, 11]. Currently, Gramine LibOS [2] has
become the major option as it is officially maintained by the
Intel. However, Gramine LibOS suffers from large trusted
computing base (TCB) while there is no efficient way to test
it until now.

Thus, we propose GRAMINER, a full-fledged Gramine Li-
bOS fuzzer, to help the developers quickly detect the bugs and
fix them. To be specific, GRAMINER employs the powerful
fuzzing technique [3, 12] to automatically and efficiently test
Gramine LibOS while covering the large input space. For that,
we modified syzkaller [3] to execute syscall traces and detect
kernel panics in Gramine LibOS. While the current proto-
type of GRAMINER runs without any coverage guidance [12]
and adress sanitizer (ASAN) [9], it clearly shows the poten-
tial by finding 6 new bugs within 12 CPU hours. We open-
source GRAMINER under https://github.com/JaewonHur/
graminer.git, so we hope GRAMINER will be used as a base-
line for the following researches.

2 Background
In this section, we introduce Gramine LibOS (§2.1), and
fuzzing (§2.2).

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for third-party
components of this work must be honored. For all other uses, contact the
owner/author(s).
SysTEX ’23, May 8, 2023, Rome, Italy
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0087-3/23/05.
https://doi.org/10.1145/3578359.3593036

2.1 Gramine LibOS
Gramine LibOS [2] is a library OS that allows legacy appli-
cations to run in the enclave protected by Intel SGX [1]. In
order to protect a user-level application from an untrusted
kernel, Intel SGX defines a new interface, ecall and ocall,
which should be used instead of the syscalls [1]. However, as
the legacy applications were not implemented with the Intel
SGX in mind, they should be modified intrusively. To this
end, Gramine LibOS seamlessly interposes in between the
user-level application and the ecall/ocall interface so as to
run the application without any modification.

Gramine LibOS runs by intercepting the syscalls invoked
from the application and handling it through the ecall/ocall
interface. Thus, Gramine LibOS implements most of the
syscall handling logics inside it, resulting in a large trusted
computing base (TCB). However, the large TCB can cause
a security problem as it may introduce lots of attack vectors
to the untrusted host kernel (e.g., unexpected memory bug
triggered by Iago attacks [7]). Furthermore, the usability can
be degraded as a bug can be triggered while running a normal
application on it, breaking down the libOS.

2.2 Fuzzing
Fuzzing is one of the most successful software testing tech-
niques that has found many bugs so far [3, 8, 12]. Briefly
speaking, given a target software, a fuzzer randomly gener-
ates inputs to the software and tests it while detecting the bugs.
Especially, syzkaller [3] targets kernel software and generates
random syscall sequences to trigger a kernel panic. Based on
the random input generation, coverage-guided fuzzer gener-
ates even advanced inputs by employing a coverage metric
that measures how much the software is tested [12].

While Gramine LibOS has been implemented with security
in mind and many unit tests [2], there is no technique currently
to exhaustively test it. To this end, we design GRAMINER to
apply the powerful fuzzing technique for testing Gramine
LibOS.

3 Design of GRAMINER

Overview. GRAMINER is a full-fledged fuzzer that finds
implementation bugs in Gramine LibOS [2]. We design
GRAMINER to be seamlessly integrated into syzkaller [3]
so that GRAMINER can reuse the features of syzkaller (e.g.,

https://github.com/JaewonHur/graminer.git
https://github.com/JaewonHur/graminer.git
https://doi.org/10.1145/3578359.3593036

VM

Manager dir/gramine-outputs/crashes

Fuzzer

Gramine LibOS

Executorsshd

Host Kernel

RPC

inputs syscalls

ocalls

ssh, scp

SGX

Figure 1. Design of GRAMINER

random syscall sequence generation). To be specific, the work-
flow of GRAMINER is shown in Figure 1. In order to run the
fuzzer, GRAMINER needs a virtual machine that runs the
Gramine LibOS inside. Same as the syzkaller, GRAMINER is
composed of i) the manager, ii) the fuzzer, and iii) the execu-
tor. The manager continuously boots a VM which runs the
testcases inside (on the Gramine LibOS), and monitors the
status of the VM while saving newly found bugs. Inside the
VM, the fuzzer randomly generates and provides a testcase
(i.e., a random sequence of syscalls) to the executor. Finally,
the executor running on the Gramine LibOS executes the re-
ceived testcase so that the syscall handling implemented in
Gramine LibOS can be tested.

3.1 Running Testcases on Gramine LibOS
In order to test Gramine LibOS, GRAMINER runs the execu-
tor directly on the Gramine LibOS. For that, GRAMINER first
configures the runtime context (i.e., manifest file for Gramine
LibOS [2]), and runs the executor on top of it. Then, the execu-
tor receives a randomly generated syscall sequence through
pipe, and invokes the syscalls.

3.2 Detecting Bugs in Gramine LibOS
GRAMINER detects the bugs triggered in Gramine LibOS
directly inside the VM. Specifically, the fuzzer running in the
VM monitors the exit status of the executor, which invokes
the random syscalls on Gramine LibOS. As the Gramine
LibOS substitutes the kernel panic inside it as the program
exit with a SIGPWR status [4] (i.e., power failure), the fuzzer
determines the bug by comparing the status against SIGPWR.
While the current implementation of GRAMINER can only
detect the kernel panic (e.g., assertion failure), it can be easily
extended to detect potential memory bugs by incorporating
Adress Sanitizer (ASAN) [9].

Once a bug is triggered, the fuzzer compiles (and saves)
the bug triggering testcase (i.e., syscall sequence) into a stan-
dalone binary, thus the bug can be easily reproduced later.
Then, the manager periodically collects the bug triggering
testcases into a global working directory (outside the VM) so
that they are preserved across the VM power cycles.

4 Evaluation
In order to evaluate GRAMINER, we fuzzed Gramine LibOS
for 12 CPU hours and found 6 assertion and memory bugs as
shown in Figure 1. The bugs were disclosed to and confirmed
by the developers, and some of them are already fixed [5].
While most of the bugs were related to syscall argument
checking, the results clearly illustrates that GRAMINER can
quickly test Gramine LibOS.

5 Discussions
Incorporating Coverage-guidance. While current im-
plementation of GRAMINER does not employ a coverage-
guidance, AFL-like coverage-guidance can also be incorpo-
rated. In order to incorporate coverage-guidance, Gramine
LibOS [2] should be compiled with AFL [12] coverage instru-
mentation. In this case, Gramine LibOS should be modified to
expose the coverage measurement to the fuzzer. For example,
we can add a synthetic file which summarizes the coverage
status to be read after each fuzzing iteration.
Invoking Real Security Bugs. Gramine LibOS has two in-
put dimensions in the security perspective: i) syscall interface
from the application to the libOS, and ii) ecall/ocall inter-
face from the host kernel to the libOS. While GRAMINER
currently fuzzes only the syscall interface, the ecall/ocall
interface should be fuzzed simultaneously to find a security
bug, which may be exploited by the host kernel. This is be-
cause the threat model of Gramine LibOS assumes only the
host kernel is malicious but the application is trusted. For that,
new input format should be defined, which interleaves the
syscalls generated from the application and the return value
of the ocalls generated from the host kernel.

6 Conclusion
In this paper, we propose GRAMINER, a full-fledged fuzzer to
find implementation bugs in Gramine LibOS [2]. GRAMINER
generates random syscalls to be invoked on top of the
Gramine LibOS and finds implementation bugs includ-
ing assertion failures and memory bugs. We implemented
GRAMINER on syzkaller [3] and GRAMINER its practical
impacts by finding 6 bugs within 12 CPU hours. We open-
sourced GRAMINER under https://github.com/JaewonHur/
graminer.git, so we hope it will be used as a baseline for the
future researches.

References
[1] https://www.intel.com/content/www/us/en/

architecture-and-technology/software-guard-extensions.html,
title = Intel Software Guard Extensions (Intel SGX).

[2] https://github.com/gramineproject/gramine, title = Gramine Library
OS with Intel SGX Support.

[3] https://github.com/google/syzkaller, title = syzkaller - kernel fuzzer.
[4] https://man7.org/linux/man-pages/man7/signal.7.html, title = sig-

nal(7) - Linux manual page.
[5] https://github.com/gramineproject/gramine/pull/1211.

https://github.com/JaewonHur/graminer.git
https://github.com/JaewonHur/graminer.git
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions.html
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions.html
https://github.com/gramineproject/gramine
https://github.com/google/syzkaller
https://man7.org/linux/man-pages/man7/signal.7.html
https://github.com/gramineproject/gramine/pull/1211

Table 1. Disclosure of the found bugs and their status

ID Found bugs Status

1 Illegal instruction during Gramine internal execution at 0x7fffffee9879 (die_or_inf_loop at cpu.h) fixed
2 Internal memory fault at 0x00000000 (libos_syscall_fchdir at libos_getcwd.c) fixed
3 Assert failed ../libos/include/libos_flags_conv.h:25 WITHIN_MASK(prot, PROT_NONE | PROT_READ | PROT_WRITE | ...) fixed
4 Assert failed ../libos/src/arch/x86_64/libos_context.c:113 IS_ALIGNED_PTR(xstate, LIBOS_XSTATE_ALIGN) confirmed
5 Error: Internal memory fault with VMA at 0xffffffffff600000 (libc.so.6+0x14a7d9) confirmed
6 Internal memory fault at 0x21000000 (libos_syscall_writev at libos_wrappers.c) fixed

[6] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre
Martin, Christian Priebe, Joshua Lind, Divya Muthukumaran, Dan
O’keeffe, Mark Stillwell, et al. Scone: Secure linux containers with
intel sgx. In OSDI, volume 16, pages 689–703, 2016.

[7] Stephen Checkoway and Hovav Shacham. Iago attacks: Why the system
call api is a bad untrusted rpc interface. ACM SIGARCH Computer
Architecture News, 41(1):253–264, 2013.

[8] Cheolwoo Myung, Gwangmu Lee, and Byoungyoung Lee. Mundo-
fuzz: Hypervisor fuzzing with statistical coverage testing and grammar
inference. In Proceedings of the 31th USENIX Security Symposium
(Security), Boston, MA, August 2022.

[9] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and
Dmitriy Vyukov. Addresssanitizer: A fast address sanity checker. In
Proceedings of the 2012 USENIX Annual Technical Conference (ATC),
Boston, MA, June 2012.

[10] Shweta Shinde, Dat Le Tien, Shruti Tople, and Prateek Saxena. Panoply:
Low-tcb linux applications with sgx enclaves. In NDSS, 2017.

[11] Chia-Che Tsai, Donald E Porter, and Mona Vij. Graphene-sgx: A
practical library os for unmodified applications on sgx. In USENIX
Annual Technical Conference, pages 645–658, 2017.

[12] M. Zalewski. American fuzzy lop. http://lcamtuf.coredump.cx/afl/.
[13] Wenting Zheng, Ankur Dave, Jethro G Beekman, Raluca Ada Popa,

Joseph E Gonzalez, and Ion Stoica. Opaque: An oblivious and en-
crypted distributed analytics platform. In Proceedings of the 14th
USENIX Symposium on Networked Systems Design and Implementa-
tion (NSDI), Boston, MA, March 2017.

http://lcamtuf.coredump.cx/afl/

	1 Introduction
	2 Background
	2.1 Gramine LibOS
	2.2 Fuzzing

	3 Design of Graminer
	3.1 Running Testcases on Gramine LibOS
	3.2 Detecting Bugs in Gramine LibOS

	4 Evaluation
	5 Discussions
	6 Conclusion
	References

